首页 > 数学 > 知识 > 高中数学优秀教案50篇,高中数学教案模板范文精选6篇

高中数学优秀教案50篇,高中数学教案模板范文精选6篇

来源:整理 时间:2023-09-30 18:33:02 编辑:挖葱教案 手机版

1,高中数学教案模板范文精选6篇

  一位杰出的老师往都会进行教案编写工作,编写教案有利于准确把握教材的重点与难点,进而选择合适的教学方法。下面是由我为大家整理的“高中数学教案模板范文精选6篇”,仅供参考,欢迎大家阅读本文。   篇一:高中数学教案模板范文精选    教学目标:   1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进   学生全面认识数学的科学价值、应用价值和文化价值。   2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。   教学重点:   如何建立实际问题的目标函数是教学的重点与难点。   教学过程:   一、问题情境   问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?   问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?   问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?    二、新课引入   导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。   1。几何方面的应用(面积和体积等的最值)。   2。物理方面的应用(功和功率等最值)。   3。经济学方面的应用(利润方面最值)。   三、知识建构   例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?   说明1解应用题一般有四个要点步骤:设——列——解——答。   说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极   值及端点值比较即可。   例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才   能使所用的材料最省?   变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?   说明1这种在定义域内仅有一个极值的函数称单峰函数。   说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:   S1列:列出函数关系式。   S2求:求函数的导数。   S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。   例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为   多大时,才能使电功率最大?最大电功率是多少?   说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。   例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。   例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。   (1)设,生产多少单位产品时,边际成本最低?   (2)设,产品的单价,怎样的定价可使利润最大?   四、课堂练习   1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。   2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。   3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?   4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。   五、回顾反思   (1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。   (2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。   (3)相当多有关最值的实际问题用导数方法解决较简单。   六、课外作业   课本第38页第1,2,3,4题。   篇二:高中数学教案模板范文精选   高中数学趣味竞赛题(共10题)   1 、撒谎的有几人   5个高中生有,她们面对学校的新闻采访说了如下的话:   爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”   玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”   千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?   2、她们到底是谁   有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。   穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?   3、半只小猫   听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。   “一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?   4、被虫子吃掉的算式   一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。   那么,请问原来的算式是什么样子的呢?   5、巧动火柴   用16根火柴摆成5个正方形。请移动2根火柴,使正形变成4。   6、折过来的角   把正三角形的纸如图那样折过来时,角?的度数是多少度?    7、星形角之和   求星形尖端的角度之和。   8、啊!双胞胎?   丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。   结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?    9、赠送和降价哪个更好?   1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?    10、折成15度   用折纸做成45度很简单是吧。那么,请折成15度,你会吗?   篇三:高中数学教案模板范文精选    一、课程性质与任务   数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。   数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。   二、课程教学目标   1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。   2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。   3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。    三、教学内容结构   本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。   1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。   2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。   3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。    四、教学内容与要求   (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)   了解:初步知道知识的含义及其简单应用。   理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)   计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。   空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。   分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。   数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。   (二)教学内容与要求1.基础模块(128学时)   第1单元集合(10学时)   第2单元不等式(8学时)   第6单元数列(10学时)   第7单元平面向量(矢量)(10学时)   第8单元直线和圆的方程(18学时)   第10单元概率与统计初步(16学时)   2.职业模块   第2单元坐标变换与参数方程(12学时)   篇四:高中数学教案模板范文精选   教学目标:   1、理解并掌握曲线在某一点处的切线的概念;   2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;   3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化   问题的能力及数形结合思想。    教学重点:   理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。   教学难点:   用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。   教学过程:   一、问题情境   1、问题情境。   如何精确地刻画曲线上某一点处的变化趋势呢?   如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。   如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。   因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。   2、探究活动。   如图所示,直线l1,l2为经过曲线上一点P的两条直线,   (1)试判断哪一条直线在点P附近更加逼近曲线;   (2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?   (3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?   二、建构数学   切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。   思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?    三、数学运用   例1 试求在点(2,4)处的切线斜率。   解法一 分析:设P(2,4),Q(xQ,f(xQ)),   则割线PQ的斜率为:   当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;   当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。   从而曲线f(x)=x2在点(2,4)处的切线斜率为4。   解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:   当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。   练习 试求在x=1处的切线斜率。   解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:   当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。   小结 求曲线上一点处的切线斜率的一般步骤:   (1)找到定点P的坐标,设出动点Q的坐标;   (2)求出割线PQ的斜率;   (3)当时,割线逼近切线,那么割线斜率逼近切线斜率。   思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?   解 设   所以,当无限趋近于0时,无限趋近于点处的切线的斜率。   变式训练   1。已知,求曲线在处的切线斜率和切线方程;   2。已知,求曲线在处的切线斜率和切线方程;   3。已知,求曲线在处的切线斜率和切线方程。   课堂练习   已知,求曲线在处的切线斜率和切线方程。   四、回顾小结   1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。   2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。   五、课外作业   篇五:高中数学教案模板范文精选   一、教学目标:   掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。   二、教学重点:   向量的性质及相关知识的综合应用。   三、教学过程:   (一)主要知识:   1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。   (二)例题分析:略   四、小结:   1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,   2、渗透数学建模的思想,切实培养分析和解决问题的能力。   五、作业:   略   篇六:高中数学教案模板范文精选   一、教学目标   【知识与技能】   掌握三角函数的单调性以及三角函数值的取值范围。   【过程与方法】   经历三角函数的单调性的探索过程,提升逻辑推理能力。   【情感态度价值观】   在猜想计算的过程中,提高学习数学的兴趣。   二、教学重难点   【教学重点】   三角函数的单调性以及三角函数值的取值范围。   【教学难点】   探究三角函数的单调性以及三角函数值的取值范围过程。   三、教学过程   (一)引入新课   提出问题:如何研究三角函数的单调性   (二)小结作业   提问:今天学习了什么?   引导学生回顾:基本不等式以及推导证明过程。   课后作业:   思考如何用三角函数单调性比较三角函数值的大小。   

高中数学教案模板范文精选6篇

2,高中数学教案设计

  讲授新课前,做一份完美的教案,能够更大程度的调动学生在上课时的积极性。接下来是我为大家整理的高中数学教案设计,希望大家喜欢!    高中数学教案设计一   教学目标   1。使学生掌握的概念,图象和性质。   (1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。   (2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。   (3) 能利用的性质比较某些幂形数的大小,会利用的图象画出形如 的图象。   2。 通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想 方法 。   3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。   教学建议   教材分析   (1) 是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。   (2) 本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数 在 和 时,函数值变化情况的区分。   (3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。   教法建议   (1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是 的样子,不能有一点差异,诸如 , 等都不是。   (2)对底数 的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。   关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。   教学设计示例   课题   教学目标   1。 理解的定义,初步掌握的图象,性质及其简单应用。   2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。   3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。   教学重点和难点   重点是理解的定义,把握图象和性质。   难点是认识底数对函数值影响的认识。   教学用具   投影仪    教学方法   启发讨论研究式   教学过程   一。 引入新课   我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。   1。6。(板书)   这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:   问题1:某种细胞_,由1个_2个,2个_4个,……一个这样的细胞_次后,得到的细胞_个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?   由学生回答: 与 之间的关系式,可以表示为 。   问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。   由学生回答: 。   在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。   一。 的概念(板书)   1。定义:形如 的函数称为。(板书)   教师在给出定义之后再对定义作几点说明。   2。几点说明 (板书)   (1) 关于对 的规定:   教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。   若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。   (2)关于的定义域 (板书)   教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。   (3)关于是否是的判断(板书)   刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。   (1) , (2) , (3)   (4) , (5) 。   学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。   最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。   3。归纳性质   作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。   函数   1。定义域 :   2。值域:   3。奇偶性 :既不是奇函数也不是偶函数   4。截距:在 轴上没有,在 轴上为1。   对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)   在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。   此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。   二。图象与性质(板书)   1。图象的画法:性质指导下的列表描点法。   2。草图:   当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。   此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。   最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)   由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:   以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。   填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。   3。性质。   (1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。   (2) 时, 在定义域内为增函数, 时, 为减函数。   (3) 时, , 时, 。    总结 之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。   三。简单应用 (板书)   1。利用单调性比大小。 (板书)   一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。   例1。 比较下列各组数的大小   (1) 与 ; (2) 与 ;   (3) 与1 。(板书)   首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。   解: 在 上是增函数,且   < 。(板书)   教师最后再强调过程必须写清三句话:   (1) 构造函数并指明函数的单调区间及相应的单调性。   (2) 自变量的大小比较。   (3) 函数值的大小比较。   后两个题的过程略。要求学生仿照第(1)题叙述过程。   例2。比较下列各组数的大小   (1) 与 ; (2) 与 ;   (3) 与 。(板书)   先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)   最后由学生说出 >1,<1,>。   解决后由教师小结比较大小的方法   (1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)   (2) 搭桥比较法: 用特殊的数1或0。   三。巩固练习   练习:比较下列各组数的大小(板书)   (1) 与 (2) 与 ;   (3) 与 ; (4) 与 。解答过程略   四。小结   1。的概念   2。的图象和性质   3。简单应用   五 。板书设计    高中数学教案设计二   《椭圆》   一、教材分析   (一)教材的地位和作用   本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。   (二)教学重点、难点   1.教学重点:椭圆的定义及其标准方程   2.教学难点:椭圆标准方程的推导   (三)三维目标   1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。   2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。 _  3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。   二、教学方法和手段   采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体, 思维训练 为主线,能力培养为主攻的原则。   “授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。   三、教学程序   1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。   2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。   3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。   4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。   5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。   6.例题讲解:通过例题规范学生的解题过程。   7.巩固练习:以多种题型巩固本节课的教学内容。   8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。   9.课后作业:面对不同层次的学生,设计了必做题与选做题。   10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。   四、教学评价   本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。    高中数学教案设计三   课题:指数与指数幂的运算   课型:新授课   教学方法:讲授法与探究法   教学媒体选择:多媒体教学   指数与指数幂的运算——学习者分析:   1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础.   2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入.   指数与指数幂的运算——学习任务分析:   1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值.   2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.   3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.   指数与指数幂的运算——教学目标阐明:   1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.   2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.   3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.   教学流程图:   指数与指数幂的运算——教学过程设计:   一.新课引入:   (一)本章知识结构介绍   (二)问题引入   1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P与死亡年数t之间的关系:   (1)当生物死亡了5730年后,它体内的碳14含量P的值为   (2)当生物死亡了5730×2年后,它体内的碳14含量P的值为   (3)当生物死亡了6000年后,它体内的碳14含量P的值为   (4)当生物死亡了10000年后,它体内的碳14含量P的值为   2.回顾整数指数幂的运算性质   整数指数幂的运算性质:   3.思考:这些运算性质对分数指数幂是否适用呢?   【师】这就是我们今天所要学习的内容《指数与指数幂的运算》   【板书】2.1.1指数与指数幂的运算   二.根式的概念:   【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..   【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.   【师】现在我们请同学来总结n次方根的概念..   1.根式的概念   【板书】概念   即如果一个数的n次方等于a(n>1,且n∈N_,那么这个数叫做a的n次方根.   【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.   【板书】表格   【师】通过这个表格,我们知道负数没有偶次方根.那么0的n次方根是什么?   【学生】0的n次方根是0.   【师】现在我们来对这个符号作一说明.   例1.求下列各式的值   【注】本题较为简单,由学生口答即可,此处过程省略.   三.n次方根的性质   【注】对于1提问学生a的取值范围,让学生思考便能得出结论.   【注】对于2,少举几个例子让学生观察,并起来说他们的结论.   1.n次方根的性质   四.分数指数幂   【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.   思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗   【师】如果成立那么它的意义是什么,我们有这样的规定.   (一)分数指数幂的意义:   1.我们规定正数的正分数指数幂的意义是:   2.我们规定正数的负分数指数幂的意义是:   3.0的正分数指数幂等于0,0的负分数指数幂没有意义.   (二)指数幂运算性质的推广:   五.例题   例2.求值   【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.   六.课堂小结   1.根式的定义;   2.n次方根的性质;   3.分数指数幂.   七.课后作业   P59习题2.1A组1.2.4.   八.课后 反思   1.在第一节课的时候没有把重要的内容写在黑板上,而且运算性质中a,r,s的条件没有给出,另外课件中有一处错误.第二节课时改正了第一节课的错误.   2.有许多问题应让学生回答,不能自问自答.根式性质的思考没有讲清楚,应该给学生更多的时间来回答和思考问题,与之互动太少.   3.讲课过程中还有很多细节处理不好,并且讲课声音较小,没有起伏.   4.课前的章节知识结构很好,引入简单到位,亮点是概念后的表格. 高中数学教案设计相关 文章 : ★ 高中数学优秀教案设计 ★ 高中数学集合教案设计 ★ 高中数学三年如何教学设计 ★ 高考数学集合教案大全 ★ 高中数学如何教学设计 ★ 高中数学课题导入方法 ★ 高中数学教案怎么写 ★ 2020高中数学等比数列教案设计大全 ★ 高中数学幂函数教案设计 ★ 高中数学随机抽样教案设计

高中数学教案设计

3,高中数学优秀教案设计

教案是老师进行教学的重要道具,对教学有重要的作用,可以帮助老师更好地把控教学节奏。有了教案,老师可以更好地进行教学,提高自身的教学水平,更好地实现教学目标。优秀的教案设计对老师的帮助是非常大的,这里给大家分享一些优秀的教案设计,供大家参考。 高中数学圆锥曲线教案 范文 一、教学内容分析 圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。 二、学生学习情况分析 我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。 三、设计思想 由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率. 四、教学目标 1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般 方法 。 3.借助多媒体辅助教学,激发学习数学的兴趣. 五、教学重点与难点: 教学重点 1.对圆锥曲线定义的理解 2.利用圆锥曲线的定义求“最值” 3.“定义法”求轨迹方程 教学难点: 巧用圆锥曲线定义解题 六、教学过程设计 【设计思路】 (一)开门见山,提出问题 一上课,我就直截了当地给出—— 例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。 (A)椭圆 (B)双曲线 (C)线段 (D)不存在 (2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。 (A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线 【设计意图】 定义是揭示概念的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。 为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。 【学情预设】 估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2 5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5 入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。 在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。 (二)理解定义、解决问题 例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。 (2)在(1)的条件下,给定点P(-2,2), 求|PA| 【设计意图】 运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。 【学情预设】 根据以往的 经验 ,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。 (三)自主探究、深化认识 如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会—— 练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。 引申:若将点A移到圆C外,点M的轨迹会是什么? 【设计意图】 练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话, 可借助“多媒体课件”,引导学生对自己的结论进行验证。 【知识链接】 (一)圆锥曲线的定义 1. 圆锥曲线的第一定义 2. 圆锥曲线的统一定义 (二)圆锥曲线定义的应用举例 x2y2 1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P169 到右准线的距离。 |PF1||PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO| 取值范围。 3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。 x2y2 4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求259 |MA|+|MF|的最小值。 x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当9272 1|AM||MF|最小时,求M点的坐标。 2 x2 (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。 8 x2y2 5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最259 小值与最大值。 七、教学 反思 1.本课将借助于“www.liuxue86.com”,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。 2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。 总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质 教育 ,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。 高中数学《等比数列》优秀教案 教学目标 1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。 (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念; (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项; (3)通过通项公式认识等比数列的性质,能解决某些实际问题。 2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。 3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。 教材分析 (1)知识结构 等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用. (2)重点、难点分析 教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用. ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点. ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点. ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点. 教学建议 (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用. (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义. (3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解. (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象. (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现. (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 教学设计示例 课题:等比数列的概念 教学目标 1.通过教学使学生理解等比数列的概念,推导并掌握通项公式. 2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力. 3.培养学生勤于思考,实事求是的精神,及严谨的科学态度. 教学重点,难点 重点、难点是等比数列的定义的归纳及通项公式的推导. 教学用具 投影仪,多媒体软件,电脑. 教学方法 讨论、谈话法. 教学过程 一、提出问题 给出以下几组数列,将它们分类,说出分类标准.(幻灯片) ①-2,1,4,7,10,13,16,19,… ②8,16,32,64,128,256,… ③1,1,1,1,1,1,1,… ④243,81,27,9,3,1,,,… ⑤31,29,27,25,23,21,19,… ⑥1,-1,1,-1,1,-1,1,-1,… ⑦1,-10,100,-1000,10000,-100000,… ⑧0,0,0,0,0,0,0,… 由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列). 二、讲解新课 请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步) 等比数列(板书) 1.等比数列的定义(板书) 根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语. 请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识: 2.对定义的认识(板书) (1)等比数列的首项不为0; (2)等比数列的每一项都不为0,即 问题:一个数列各项均不为0是这个数列为等比数列的什么条件? (3)公比不为0. 用数学式子表示等比数列的定义. 是等比数列 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列?为什么不能? 式子给出了数列第项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式. 3.等比数列的通项公式(板书) 问题:用和表示第项 ①不完全归纳法 ②叠乘法 ,…,,这个式子相乘得,所以 (板书)(1)等比数列的通项公式 得出通项公式后,让学生思考如何认识通项公式. (板书)(2)对公式的认识 由学生来说,最后归结: ①函数观点; ②方程思想(因在等差数列中已有认识,此处再复习巩固而已). 这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练) 如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题。 三、小结 1.本节课研究了等比数列的概念,得到了通项公式; 2.注意在研究内容与方法上要与等差数列相类比; 3.用方程的思想认识通项公式,并加以应用。 探究活动 将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0.01毫米。 参考答案: 30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是 粒,用计算器算一下吧(对数算也行)。 高中数学数列教案设计 一、教材分析 (一)地位与作用 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 (二)学情分析 (1)学生已熟练掌握_________________。 (2)学生的知识经验较为丰富,具备了教强的 抽象思维 能力和演绎推理能力。 (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。 (4) 学生层次参次不齐,个体差异比较明显。 二、目标分析 新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标: (一)教学目标 (1)知识与技能 使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。 (2)过程与方法 引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。 (3)情感态度与价值观 在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 (二)重点难点 本节课的教学重点是________________________,教学难点是_____________________。 三、教法、学法分析 (一)教法 基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性. 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念. 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达. (二)学法 在学法上我重视了: 1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到 理性思维 的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、 总结 、运用,培养学生发现问题、研究问题和分析解决问题的能力。 四、教学过程分析 (一)教学过程设计 教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。 (1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。 (2)引导探究,建构概念。 数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过过程. (3)自我尝试,初步应用。 有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究. (4)当堂训练,巩固深化。 通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。 (5)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能? (二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成. 高中数学优秀教案设计相关 文章 : 1. 高中数学集合教案设计 2. 高中数学教案怎么写 3. 高中数学如何教学设计 4. 高考数学集合教案大全 5. 高中数学三年如何教学设计 6. 2020高中数学等比数列教案设计大全 7. 高中语文《数学与文化》教案设计 8. 高中数学随机抽样教案设计 9. 高中数学幂函数教案设计 10. 高中数学等差数列教案大全

高中数学优秀教案设计

文章TAG:高中高中数学数学优秀高中数学优秀教案50篇

最近更新

  • 水果种类英语单词,水果类的英语单词有哪些水果种类英语单词,水果类的英语单词有哪些

    水果类的英语单词有哪些1、pineapple:读音为英[?pa?n?pl]、美[?pa?n?pl],菠萝、凤梨、凤梨科的例句:Pineappleismyfavoritefruit。菠萝是我喜欢的水果。2、watermelon:读音为英[?w??t?mel?.....

    知识 日期:2023-09-30

  • 数与形教学设计优质课,大班优质数学公开课教案6的加法数与形教学设计优质课,大班优质数学公开课教案6的加法

    大班优质数学公开课教案6的加法2,如何做好小学数学教学设计3,最新大班数学优质课教案4,求一个数的几倍是多少优秀教学设计5,如何小学数学教学活动设计6,求比一个数少几的数是多少教案设计7,.....

    知识 日期:2023-09-30

  • 小班教案 蔬菜宝宝教学反思,幼儿园小班教学反思怎样写小班教案 蔬菜宝宝教学反思,幼儿园小班教学反思怎样写

    幼儿园小班教学反思怎样写2,小班活动区分水果与蔬菜的游戏案例与反思3,一园蔬菜热闹闹幼儿园中班教学反思4,小班蔬菜健康的教案5,急幼儿园小班教案一份啊1,幼儿园小班教学反思怎样写结合工.....

    知识 日期:2023-09-30

  • 小学数学10分钟微课教案模板,小学微课教案应该怎么写呢小学数学10分钟微课教案模板,小学微课教案应该怎么写呢

    小学微课教案应该怎么写呢2,小学数学10分钟的示范课咋样才能上好3,如何在10分钟内展示教学设计和课件4,哪个好老师我要怎么写一份小学数学通分的说课稿阿请帮帮忙阿5,微格教学的教案6,论文.....

    知识 日期:2023-09-30

  • 网课视频加速器16倍,视频加速软件网课视频加速器16倍,视频加速软件

    视频加速软件2,加速视频播放器3,求一款可以加速网络视频播放速度的软件4,求视频加速的软件5,16倍加速能不能开会不会封号求高手赐教6,有没有支持16倍回放速度的NVR7,网易公开课可以加速你看.....

    知识 日期:2023-09-30

  • 社会实践课业辅导,大学生暑期社会实践报告 在社区为学生做学习辅导社会实践课业辅导,大学生暑期社会实践报告 在社区为学生做学习辅导

    大学生暑期社会实践报告在社区为学生做学习辅导2,大学生以社会实践的名义开办针对小学的辅导班是否合法如何想申3,小学二年级社会实践作业爱祖国爱劳动节水节电节粮的生活4,大学生暑期家.....

    知识 日期:2023-09-30

  • 教案格式有哪些种类的,教案的基本形式是什么教案格式有哪些种类的,教案的基本形式是什么

    教案的基本形式是什么教学内容:教学目标:教学准备:教学过程:教学总结:记叙式,表格式,卡片式2,音乐教案分为几种类型啊网上没有相关的答案求助1、按照课型可分为:唱歌教案、欣赏教案、音乐活动课.....

    知识 日期:2023-09-30

  • 美术绘画教学视频铅笔,怎么学会铅笔画美术绘画教学视频铅笔,怎么学会铅笔画

    怎么学会铅笔画2,铅笔手绘教程工具我画画很烂的3,想用铅笔画高达请问步骤是什么要准备哪些东西最好有字加图4,高级动态形体绘画教程里DavidFinch用的铅笔是5,喜欢用铅笔画风景这算风景素描.....

    知识 日期:2023-09-30