首页 > 语文 > 问答 > 数学奥数题100道,数学题奥数题

数学奥数题100道,数学题奥数题

来源:整理 时间:2023-04-24 05:29:59 编辑:挖葱教案 手机版

本文目录一览

1,数学题奥数题

520+68=588(M) 588/42=14 每秒14米

数学题奥数题

2,100道小学生奥数题

一、计算(5×5=25分) 1、 + + + + + + =2、 + + + +……+ =3、654322×123456-654321×123455=04、11111×11111=5、 × =二、填空题。(计69分) 1、小于400的自然数中不含数字8的数有( )个。(6分)2、在一个正方形内有1995个点,加上正方形四个顶点共1999个点,现将正方形分割成以这些点为顶点的三角形,最多能分成( )个。(这些点中的任意三点均不在一条直线上)(6分)3、有9枚铜钱,其中一枚是假的,真假只是质量不同,用无砝码的天平,至少称( )次,就肯定能够将假铜钱找出来。(7分)4、小于200且与200互质的所有自然数的和是( )。(8分)5、在公路上每隔100千米有一个仓库,共5个仓库。1号仓库存货10吨,2号仓库存货20吨,5号仓库存货40吨,其余两个仓库是空的,现在想把所有的货物集中放在一个仓库里,若每吨货物运输1千米要1元运费,那么至少要花费( )元运费才行。(6分)1号100千米2号100千米3号100千米4号100千米5号 10吨 20吨 40吨6、把一个6面都涂上红色的正方体木块,锯成( )块相同的小正方体时,一面涂红色的小正方体为96块。(6分)7、六年级共有学生207人,选出男生的 和7名女生参加数学竞赛,剩下的男女生人数相同,六年级有女生( )人。(7分)8、要在边长为24米的正方形水池边铺上正方形瓷砖,这钟瓷砖每边为15厘米,如果紧贴水池往里面铺4层瓷砖,(瓷砖之间的空隙忽略不计)共要瓷砖( )块。(6分)9、有红、黄、蓝、绿、黑5种颜色的玻璃球100个,其中红的12个、黄的27个、蓝的9个、绿的19个、黑的33个,把这些球装在一个布袋里,一次至少取出( )个才能保证有16个相同颜色的球。(6分)10、甲、乙、丙、丁四位同学在篮球比赛中犯规的次数各不相同,A、B、C、D四位裁判有一段对话:A说:“甲犯规4次,乙犯规3次。”B说:“丙犯规4次,乙犯规2次。”C说:“丁犯规2次,丙犯规3次。”D说:“丁犯规1次,乙犯规3次。”记录员说:“A、B、C、D四位裁判每人只说对了一半。”甲犯规( )次。(5分)11、参加团体操表演的240名学生站成若干排,全部面向教练,然后按1、2、3、……239、240的顺序报数,教练要求学生按下面的步骤操作:(6分)(1)报的数是3的倍数的同学向后转;(2)报的数是5的倍数的同学向后转;(3)报的数是7的倍数的同学向后转。经过3个步骤后,背向教练的有( )人。三、操作题(6分) 下图有3行棋子,请你移动若干次,使每行均为8粒。要求棋子每移动一次,移出的数量都与该行原有的棋子数相同。请写出你的操作方法。

100道小学生奥数题

3,数学奥数题

5×(5-1÷5)=24
5(5-1/5)
这题应该没解…
5*(5-1/5)=24
5乘以5减去1
不可能吧

数学奥数题

4,100道奥数题我要题和答案

、186576×199911-199912×186575=( )。 2、找规律填数: ①11,12,14,18,26( )。 ②1,2,2,4,8,32( )。 3、连续的六个自然数,前三个数的和是60,那么后三个数的和是( )。 4、甲、乙、丙三数之和是116,甲数除以乙数,丙数除以甲数,都是商2余1,那么,乙数是( )。 5、某商店规定可以用3个空汽水瓶换一瓶汽水,小明买了8瓶汽水,喝完后用空汽水瓶去换汽水,他一共可以喝( )瓶汽水。 6、下图中有( ) 个三角形。如图: 7、被除数是3320,商是150,余数是20,除数是( )。 8、在下面的式子中填上括号,使等式成立。 5 × 8 + 16 ÷ 4 – 2 = 20 9、光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台,需要( )分钟。 10、现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵中共有松树和柏树( )棵。 11、甲、乙两个粮库原来共存大米320吨,后来从甲粮库运出40吨,给乙库运进20吨,这时甲库存的大米是乙库的2倍,甲粮库原来存大米( )吨,乙粮库原来存大米( )吨。 12、有一圆形跑道长690米,甲乙两人同时从起点出发,甲每分钟行60米,乙每分钟行55米,( )小时后甲第一次追上乙。 13、一座大桥2400米,一列火车通过大桥时每分钟行900米,从车头开上桥到车尾离开桥共需要3分钟。这列火车长( )米。 14、填数: 7 6 15、计算9999+999+99+9+8=( ) 16、一桶油连桶重120千克,用去一半后,连桶还重65千克。这桶里原有油( )千克,空桶重( )千克。 17、观察下面各数的变化规律,然后填空。(1)8、12、16、20、( )(2)7、2、5、2、3、2、( )、( )(3)5、6、8、12、20、( )(4)792、693、594、( )、( ) 18、在数字之间填上合适的运算符号,使等式成立。 5 5 5 5 5=10 5 5 5 5 5=11 5、有一根木料,要锯成4段,每锯开一处,需要4分钟。全部锯完需要( )分钟。 19、三只笼里共养了18只兔子。如果从第一只笼里取出4只放到第二只笼里,再从第二只笼里取出3只放到第三只笼里。那么三只笼里的兔子就一样多。原来三只笼里各养了( )只、( )只、( )只。 20、贺林家养鸡的只数是鹅的6倍,鸭比鹅多8只,鸭有15只。贺林家养了( )只鸡。 21、今天是星期日,从今天算起,第60天是星期( )。 22、有同样大小的红、白、黑珠共90个,按3个红的后2个白的,再1个黑的排列。那么黑珠共有( )个,第68个是( )色的。 23、学校有排球、足球共50个,排球比足球多4个,排球有( )个,足球有( )个。 24、哥哥和弟弟共有画片38张,弟弟给哥哥3张后还比哥哥多2张,弟弟原有( )张画片,哥哥原有( )张画片。 25、已知两数的和是84,大数是小数的6倍,大数是( ),小数是( ) 26、甲乙两个仓库共存粮400千克。已知甲仓库存粮是乙仓库存粮的5倍少44千克,甲仓库存粮( )千克,乙仓库存粮( )千克。 27、一个数减去16加上24,再除以7得36,这个数是( ) 28、养鸡专业户养的公鸡比母鸡少285只,养的母鸡是公鸡的6倍。养的公鸡( )只,母鸡( )只。 29、苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,苹果还剩7个,梨正好全部吃完。原来有苹果( )个。 30、二年级三个班修补图书45本。一班和二班修补了28本,二班和三班修补了30本 ,一班修补( )本,二班修补( )本,三班修补( )本。 31、用3、6、9三个数字可以组成( )个三位数。 32、一只猴子的重量等于两只兔子的重量,一只兔子的重量等于两只小鸡的重量,那么一只猴子的重量等于( )小鸡的重量。 33、在一桩谋杀案中,有两个嫌疑犯甲和乙。另外四个证人正在接受讯问。第一个证人说:“我只知道甲是无罪的。” 第二个证人说:“我只知道乙是无罪的。” 第三个证人说:“前面两个证词至少一个是真的。” 第四个证人说:“我可以肯定第三个证人的证词是假的。” 通过调查研究,已证实第四个证人说了实话。请你分析一下谁是凶手? 34、 (0.75×42.7+57.3-0.573×25)÷3×7972 = 35、 计算:1+2+3+…+10+11+12+11+10+…+3+2+1. 36、 计算:2000×1999-1999×1998+1998×1997-1997×1996+1996×1995-1995×1994。 37、 计算:(599+672×428)÷(426×672+1943) 38、 算式2×3×5×7×11×13×17最后得到的乘积中,所有数位上的数字和是多少? 39、 用0、1、2、3、4、5能组成多少个非零偶数? 40、 把0、1、2、3、4五个数字分别填在下式的方格中(每个数字只能用一次),组成一个乘法算式,并使它的积最大。 □□□×□□ 41、 用1,2,3,4,5,6,7,8这八个数字组成两个四位数,使它们的乘积最大,这两个数是多少? 42、 把1,2,3,4,…,999这999个数均匀排成一个大圆圈,从1开始数:隔过1划掉2,3,隔过4,划掉5,6……这样每隔一个数划掉两个数,转圈划下去。问:最后剩下哪个数?为什么? 43、 一次知识竞赛中,有3道题,每题满分7分,给分时只能给出自然数1、2、3、4、5、6、7分。已知竞赛后每人3道题得分的积都是36,且每道题三人得分互不相同,那么参加竞赛的最多有几人? 44、 把下图各分成四个大小相等,形状相同的图形。 45、 在下面图形中有多少个长方形(包括正方形)? 46、 如图,一个圆从A点出发,沿一个正三角形边滚动一周回到A点,如果正三角形边长等于圆的周长,那么这圆旋转了多少度? 47、 将一副三角板摆放在一起(可以叠放),使同时出现15°,30°,45°,60°,75°,90°,105°这七个角,请画图说明并表示出这些角。 48、 仓库里有两个货位,第一货位上有78箱货物,第二货位上有42箱货物,两个货位上各运走了相同的箱数之后,第一货位上的箱数还比第二货位上的箱数多2倍。两个货位上各运走了多少箱货物? 49、 有一座山里有若干个大和尚和若干个小和尚,已知7个大和尚每天共吃41个馒头,29个小和尚每天共吃11个馒头,而平均每个和尚恰好每天吃一个馒头,那么在这座山里至少有几个和尚? 50、 张彬买了3斤鸭和4斤鸡,共付出9元6角,李杰买了3斤鸡和4斤鸭,付出9元3角,每斤鸡和每斤鸭各是多少元? 51、 在双轨铁路上,有一列每小时运行72千米的客车,客车司机发现对面开来一列每小时运行90千米的货车,这时货车从他身边驶过用了8秒钟,求货车的车长? 52、 一个车间原有男工人数比女工多45人,如果调走男工5人,那么男工数正好是女工的3倍,求原有男工多少人? (五)实践活动 53、 明明、冬冬、蓝蓝、静静、思思和毛毛六人参加一次会议,见面时每两人都要握一次手,明明已握了五次手,冬冬已握了四次手,蓝蓝已握了三次手,静静已握了两次手,思思握了一次,问毛毛已握了几次手? 54、 三个口袋,有一个装着两个黑球,另一个装着两个白球,还有一个装着一个黑球一个白球。可是,口袋外面的标签都贴错了,标签上写的字与袋子里球的颜色不一样。你能不能只从一个口袋里摸出一个球,就能说出这三个口袋各装的是什么颜色的球? 55、 甲说:“我10岁,比乙小2岁,比丙大1岁。” 乙说:“我不是年龄最小的,丙和我差3岁,丙是13岁”。丙说:“我比甲年龄小,甲 11岁,乙比甲大3岁。” 以上每人所说的三句话中都有一句是错的,请确定甲、乙、丙三人的年龄。 56、 陈、李、王三位老师担任五(1)班的语文、数学、思品、体育、音乐和美术六门课的教学,每人教两门,现在知道,(1)思品老师和数学老师是邻居;(2)李老师最年轻;(3)陈老师喜欢和体育教师、数学老师交谈;(4)体育老师比语文老师年龄大;(5)李老师、音乐老师、语文老师三人经常一起去游泳。你能分析各人分别教的是哪两门课吗? 57、 A、B、C、D、E、F六人分别是中国、日本、美国、英国、法国、德国人。现在已知: (1)A和中国人是医生;(2)E和法国人是教师; (3)C和日本人是警察;(4)B和F曾当过兵,日本人从未当过兵; (5)英国人比A年龄大,德国人比C年龄大; (6)B同中国人下周要到中国去旅行,而C同英国人下周要到瑞士去度假。 问:A、B、C、D、E、F各是哪一国人? 58、 有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗? 59、李平和王丽到新华书店去买书,他们选中了同一本书,可是他们带的钱不够。李平差3元,王丽差1.5元,只好合买一本,钱刚好够,这本书多少元? 60、49名探险队员要过一条河,但他们只带了1只可一次乘坐7人的橡皮艇。只知道过1次河需要3分钟,请你帮助算一下,全体队员都渡到河岸需要多少分钟? 巧算:99999÷5+9999÷5+999÷5+99÷5+9÷5 巧算:222×17+333×4+666×9

5,数学奥数题

解:(1)可以的 解答如下 21+7+8=36 2+2-1=3 3能被36整除 即36÷3=12 (2)不能 如果把21和7加上2,8减去1 则有21+2+7+2+8-1=39 21+2=23 7+2=14 8-1=7 以知道这三个数的和永远不变,等于最初的:21+7+8=36 23+15+19=57 而三个数的和永远不变。 所以 不能

6,求一百道奥数题

一、填空题 1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒? 2.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度. 3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长. 4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少? 5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗? 6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米. 7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙多少时间后两人相遇? 8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟? 9.某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度. 10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇? 二、解答题 11.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间? 12.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车? 13.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度. 14.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间? ———————————————答 案—————————————————————— 一、填空题 120米 102米 17x米 20x米 尾 尾 头 头 1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.设从第一列车追及第二列车到两列车离开需要x秒,列方程得: 102+120+17 x =20 x x =74. 2. 设列车的速度是每秒x米,列方程得 10 x =90+2×10 x =11. 3. (则快车长:18×12-10×12=96(米) (2)车尾相齐,同时同方向行进,快车 则慢车长:18×9-10×9=72(米) 4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒) (2)车身长是:13×30-310=80(米) 5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时) (2)车身长是:20×15=300(米) 6. 设火车车身长x米,车身长y米.根据题意,得 ①② 解得 7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得 ①② ①-②,得: 火车离开乙后两人相遇时间为: (秒) (分). 8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)?(15+20)=8(秒). 9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度. 90÷10+2=9+2=11(米) 答:列车的速度是每秒种11米. 10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下: ①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则: (i)火车开过甲身边用8秒钟,这个过程为追及问题: 故 ; (1) (i i)火车开过乙身边用7秒钟,这个过程为相遇问题: 故 . (2) 由(1)、(2)可得: , 所以, . ②火车头遇到甲处与火车遇到乙处之间的距离是: . ③求火车头遇到乙时甲、乙二人之间的距离. 火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为: ④求甲、乙二人过几分钟相遇? (秒) (分钟) 答:再过 分钟甲乙二人相遇. 二、解答题 11. 1034÷(20-18)=91(秒) 12. 182÷(20-18)=91(秒) 13. 288÷8-120÷60=36-2=34(米/秒) 答:列车的速度是每秒34米. 14. (600+200)÷10=80(秒) 答:从车头进入隧道到车尾离开隧道共需80秒. 平均数问题 1. 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分? 2. 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩? 3. 已知八个连续奇数的和是144,求这八个连续奇数。 4. 甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元? 5. 食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克? 等差数列 1、下面是按规律排列的一串数,问其中的第1995项是多少? 解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984 2、在从1开始的自然数中,第100个不能被3除尽的数是多少? 解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149. 3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少? 解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。 4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少? 解答:因为34×28+28=35×28=980<1000,所以只有以下几个数: 34×29+29=35×29 34×30+30=35×30 34×31+31=35×31 34×32+32=35×32 34×33+33=35×33 以上数的和为35×(29+30+31+32+33)=5425 5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。 解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。 6、下面的各算式是按规律排列的: 1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992? 解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。 7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少? 解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。 8、有19个算式: 那么第19个等式左、右两边的结果是多少? 解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。 9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对? 解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。 10、如图,有一个边长为1米的下三角形,在每条边上从顶点开始,每隔2厘米取一个点,然后以这些点为端点,作平行线将大正三角形分割成许多边长为2厘米的小正三角形。求⑴边长为2厘米的小正三角形的个数,⑵所作平行线段的总长度。 解答:⑴ 从上数到下,共有100÷2=50行, 第一行1个,第二行3个,第三行5个,……,最后一行99个, 所以共有(1+99)×50÷2=2500个; ⑵所作平行线段有3个方向,而且相同, 水平方向共作了49条, 第一条2厘米,第二条4厘米,第三条6厘米,……, 最后一条98厘米, 所以共长(2+98)×49÷2×3=7350厘米。 11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人? 解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。 12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页? 解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。 13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵? 解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫?敲戳?个应该越多越好,有: 17+16+15+14+13=75棵, 所以最少的小队最少要种82-75=7棵。 14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少? 解答:最大与最小数的和为170-150=20,所以最大数最大为20-1=19, 当最大为19时,有19+18+17+16+15+14+13+12+11+10+9+8+7+1=170, 当最大为18时,有18+17+16+15+14+13+12+11+10+9+8+7+6+2=158, 所以最大数为19时,有第2个数为7。 周期问题 基础练习 1、(1)○△□□○△□□○△□□……第20个图形是(□)。 (2) 第39个棋子是(黑子)。 2、 小雨练习书法,她把“我爱伟大的祖国”这句话依次反复书写,第60个字应写(大)。 3、 二(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。 4、 有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。 5、 有同样大小的红、白、黑三种珠子共100个,按照3红2白1黑的要求不断地排下去。 …… (1)第52个是(白)珠。 (2)前52个珠子共有(17)个白珠。 6、甲问乙:今天是星期五,再过30天是星期(日)。 乙问甲:假如16日是星期一,这个月的31日是星期(二)。 2006年的5月1日是星期一,那么这个月的28日是星期(日)。 ※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?(37÷4=9…1 第一个拿牌的人一定抓到“大王”,) 答案 1、(1)□。 (2)黑子。 2、大。 3、男同学。 4、第20个数字是(3),这20个数的和是(58)。 5、 (1)第52个是(白)珠。 (2)前52个珠子共有(17)个白珠。 6、(日)。(二)。(日)。 ※ (37÷4=9…1 第一个拿牌的人一定抓到“大王”,) 提高练习 1、(1)○△□□○△□□○△□□……第20个图形是(□)。 (2)○□◎○□◎○□◎○…… 第25个图形是(○)。 2、运动场上有一排彩旗,一共34面,按“三红一绿两黄”排列着,最后一面是(绿旗)。 3、“从小爱数学从小爱数学从小爱数学……”依次排列,第33个字是(爱)。 4、(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。 5、有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。 6、甲问乙:今天是星期五,再过30天是星期(日)。 乙问甲:假如16日是星期一,这个月的31日是星期(二)。 2006年的5月1日是星期一,那么这个月的28日是星期(日)。 ※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗? ※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”) 答案 1、(1)□。 (2)○。 2、绿旗。 3、爱。 4、(1)男同学。 5、第20个数字是(3),这20个数的和是(58)。 6、(日)。(二)。(日)。 ※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”) 小数的速算与巧算(二) 一、真空题 1. 计算 4.75-9.64+8.25-1.36=_____. 2. 计算 3.17-2.74+4.7+5.29-0.26+6.3=_____. 3. 计算 (5.25+0.125+5.75) 8=_____. 4. 计算 34.5 8.23-34.5+2.77 34.5=_____. 5. 计算 6.25 0.16+264 0.0625+5.2 6.25+0.625 20=_____. 6. 计算 0.035 935+0.035+3 0.035+0.07 61 0.5=_____. 7. 计算 19.98 37-199.8 1.9+1998 0.82=_____. 8. 计算 13.5 9.9+6.5 10.1=_____. 9. 计算 0.125 0.25 0.5 64=_____. 10. 计算 11.8 43-860 0.09=_____. 二、解答题 11.计算 32.14+64.28 0.5378 0.25+0.5378 64.28 0.75-8 64.28 0.125 0.5378. 12. 计算 0.888 125 73+999 3. 13. 计算 1998+199.8+19.98+1.998. 14. 下面有两个小数: a=0.00…0125 b=0.00…08 1996个0 2000个0 试求a+b, a-b, a b, a b. ———————————————答 案—————————————————————— 1. 2 原式=(4.75+8.25)-(9.64+1.36) =13-11 =2 2. 17 原式=(3.71+5.29)+(4.7+6.3)-(2.74+0.26) =9+11-3 =17 3. 89 原式=(5.25+5.75+0.125) 8 =(11+0.125) 8 =11 8+0.125 8 =88+1 =89 4. 345 原式=34.5 (8.23+2.77-1) =34.5 10 =345 5. 62.5 原式=6.25 0.16+2.64 6.25+5.2 6.25+6.25 2 =6.25 (0.16+2.64+5.2+2) =6.25 10 =62.5 6. 35 7. 1998 8. 199.3 原式=13.5 (10-0.1)+6.5 (10+0.1) =13.5 10-13.5 0.1+6.5 10+6.5 0.1 =135-1.35+65+0.65 =(135+65)-(1.35-0.65) =200-0.7 =199.3 9. 1 原式=0.125 0.25 0.5 (8 4 2) =(0.125 8) (0.25 4) (0.5 2) =1 1 1 =1 10. 430 原式=11.8 43-43 20 0.09 =11.8 43-43 1.8 =43 (11.8-1.8) =43 10 =430 11. 原式=32.14+64.28 0.5378 (0.25+0.75-8 0.125) =32.14+64.28 0.5378 0 =32.14 12. 原式=0.111 (8 125) 73+111 (9 3) =111 73+111 27 =111 (73+27) =111 100 =11100 13. 原式=(2000-2)+(200-0.2)+(20-0.02)+(2-0.002) =2222-2.222 =2222-(10-7.778) =2222-10+7.778 =2219.778 14. a+b,a的小数点后面有1998位,b的小数点后面有2000位,小数加法要求数位对齐,然后按整数的加法法则计算,所以 a+b=0.00…012508 = 0.00…012508 2000位 1996个0 ,方法与a+b一样,数位对齐,还要注意退位和补零,因为 a=0.00…0125,b=0.00…08,由12500-8=12492,所以 1998位 2000位 a-b=0.00…12492=0.00…012492 2000位 1996个0 a b,a b的小数点后面应该有1998+2000位,但125 8=1000,所以 a b=0.00…01000 = 0.00…01 1998+2000位 3995个0 a b,将a、b同时扩大100…0倍,得 2000个0 a b=12500 8=1562.5 几何知识 面积的计算 1、 人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。现在操场面积比原来增加多少平方米? 【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积,操场现在的面积是:(90+10)×(45+5)=5000(平方米),操场原来的面积是:90×45=4050(平方米)。所以现在比原来增加5000-4050=950平方米。 (90+10)×(45+5)-(90×45)=950(平方米) 练习(1)有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米,3分米,面积比原来减少多少平方分米? 练习(2)一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米? 2、 一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米? 【思路导航】由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12×9=108(平方米)。 (36÷3)×(54÷9)=108(平方米) 练习(1)一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米? 练习(2)一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形的面积原来是多少平方米? 练习(3)一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。 3、 下图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大。 【思路导航】根据题意,因为一面利用墙,所以两条长加上一条宽等于16米,而宽是4米,那么长是(16-4)÷2=6(米)。因此,占地面积是6×4=24(平方米) (16-4)÷2×4=24(平方米) 练习(1)下图是某个养禽专业户用一段长13米的篱笆围成一个长方形的养鸡场,求养鸡场的占地面积有多大? 练习(2)用56米长的木栏围成一个长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大? 4、 一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如下图),面积比原来的正方形减少181平方分米,原正方形的边长是多少? 【思路导航】把阴影的部分剪下来,并把剪下的两个小正方形拼合起来(如下图),再补上长,长和宽分别是8分米、5分米的小长方形,这个拼合成的长方形的面积是:181+8×5=221(平方分米),长是原来正方形的边长,宽是:8+5=13(分米)。所以,原正方形的边长是221÷13=17(分米) (181+8×5)÷(8+5)=17(分米) 练习(1)一个正方形一条边减少6分米,另一条边减少10分米后变成一个长方形,这个长方形的面积比正方形的面积少260平方分米,求原来的正方形的边长。 练习(2)一个长方形木板,如果长减少5分米,宽减少2分米,那么它的面积减少66平方分米,这时剩下的部分恰好是一个正方形,求原来长方形的面积。 练习(3)一块正方形的玻璃,长和宽都截去8厘米后,剩下的正方形比原来少448平方厘米,这块正方形玻璃原来的面积是多大?

7,奥数题

需要设的未知数有三个:每个人收费的速度:a人/分钟,来排队的速度:b人/分钟,第一个来排队的人来的时间:c点。 那么,6个人收费,收了60分钟:6*60a = (10:30-c)b ---1 10个人收费,收了30分钟:10*30a = (10:00-c)b ------2 1式-2式,得到:60a = 30b,a = b/2 带回1式,得到:10:30-c = 180,c = 7:30 所以7:30就有人来排队了

8,数学题奥数题

甲乙合作的工效和是 1/10 乙丙合作的工效和是 1/12 甲丙合作的工效和是 1/15 所以丙的工效是 (1/12 + 1/15 - 1/10)÷2 =1/40 因为(乙+丙)+(甲+丙)-(甲+乙)=2个丙 丙独做的时间是 1÷ 1/40 =40天
40天。设甲乙丙一天的工作效率分别为x,y,z,得1除以x,y为10,1除以y,z为12,1除以x,z为15,解得z为四十分之一,因此丙单独做要花40天
设丙为x (1-x/12)/12=(1-10(1-x/15)/15)/10

9,数学奥数题题目

=1/2-1/3+1/3-1/4+1/4-1/5+...+1/8-1/9+1/9-1/10=1/2-1/10=2/5
你把绝对值里面的数全是负数,所以去掉要把二个数掉回来。象第一个跟第二个变成(1/2-1/3)+(1/3-1/4)把括号去掉。因为在加法里去括号跟没去是一样的,你会发现前一个要减去的刚好是后一个要加的。相互消掉后就明白了,自己再看看,相信你行的,能做这种作业的一定是个高手。只是经验还没到罢了
1/2+1/3-1/3+1/4-1/4......+1/9-1/9-1/10=1/2-1/10=2/5

10,数学奥数题

5-3=2, 2+5=7. 3+3-5=1, 1+3=4.。
五升的杯子装满,然后倒入到3升的杯子中 ,剩下的两升倒入要量4升的杯子 ,再把三升的杯子中的水全部倒回五升的杯子 ,再把五升的杯子装满 ,然后倒入到三升的杯子中,剩下的两升倒入要量四升的杯子 。这样就是4升这时候三升的杯子里还有三升水,再将这三升水倒回到五升的杯子里然后将五升的杯子装满倒满三升的杯子,五升杯子里剩下的就是两升,倒入七升的杯子里,然后再将三升水杯里的三升水倒回到五升的杯子中,将杯子的水填满,倒入七升的杯子里,这样一点都没有浪费
5倒入3,得到2 2+5=7 7的时候,将3倒满,得到4 结束
先用5升杯装满,倒入3升杯,剩2升,再把3升杯里的水倒了,把5升杯里德的那两升水倒入3升杯。最后把5升杯装满,再向3升杯倒水,直到倒满,最后5升杯里就剩4升水。 再把3升杯装满水就行。
把3升的杯子放到5升的杯子里,用手按住,加水到余下空间的5升杯子里,加满,拿出3升的杯子,而这时5升杯子里装水2升,把这2升水,倒入3升的杯子里,再加满水在5升杯子里=7升 4升=把3升的杯子放到5升的杯子里,用手按住,加水到余下空间的5升杯子里,加满,拿出3升的杯子,而这时5升杯子里装水2升,把这2升水,倒入3升的杯子里,把3升的杯子放到5升的杯子里,用手按住,加水到余下空间的5升杯子里,加满,那2+2=4
文章TAG:数学奥数题100道数学奥数数学题

最近更新

  • 幼儿园课件背景图片简约唯美,淡雅ppt背景图片要清新一点幼儿园课件背景图片简约唯美,淡雅ppt背景图片要清新一点

    淡雅ppt背景图片要清新一点ppt背景图片淡雅风格下载2,课件背景好内容,完整的连贯性.简单的插画和花边,如果可以有轻音乐,在不影响的情况下,这样就很好了!3,哪里有漂亮的课件背景图片www......

    问答 日期:2023-05-06

  • 水果拼盘怎么做好看,水果拼盘怎么做好看又好吃水果拼盘怎么做好看,水果拼盘怎么做好看又好吃

    水果拼盘怎么做好看又好吃2,水果盘如何做才好看3,简单好看的水果拼盘4,水果拼盘的做法5,水果拼盘怎么才能做到最高境界6,好几张水果怎么放在一个盘子里好看7,怎样制作水果拼盘要好看1,水果拼.....

    问答 日期:2023-05-06

  • 教案的格式及范文,教案怎么写教案的格式及范文,教案怎么写

    教案怎么写2,教师教案本怎么写3,如何写教案4,教案的格式是怎样的有没有标准的范例5,教师教案怎么写6,教案怎么写7,如何写教案1,教案怎么写教案包括教学目标、教学重难点、教具准备、教学时数.....

    问答 日期:2023-05-06

  • 小学教师备课本模板,教师教案本怎么写小学教师备课本模板,教师教案本怎么写

    教师教案本怎么写从网上找一下教学模板下载一份,然后根据教参里的每科的信息往上面写就行~什么教学重点教学难点~教学目标.教参里面都有~不难或者你也可以根据自己对本课的理解写点~但.....

    问答 日期:2023-05-06

  • 插画培训机构推荐就业吗,在机构学习艺术设计后推荐就业靠谱吗插画培训机构推荐就业吗,在机构学习艺术设计后推荐就业靠谱吗

    在机构学习艺术设计后推荐就业靠谱吗2,cg插画学完好就业吗3,学习插画未来有出路吗1,在机构学习艺术设计后推荐就业靠谱吗推荐就业是可靠的。这个毕竟与自己学习能力学到的技能有关,培训机.....

    问答 日期:2023-05-04

  • 学汉字的app哪个好,谁比较了解比较好的识字软件都有哪些 呢学汉字的app哪个好,谁比较了解比较好的识字软件都有哪些 呢

    谁比较了解比较好的识字软件都有哪些呢现在的识字软件五花八门,但是我们家一直都用的是倍比学语,觉得很适合中国的小孩子的。比较多元化。解识字魔法岛软件的2,小朋友学认字的话用哪个App.....

    问答 日期:2023-05-04

  • 幼儿园主题审议五步法,议案的有哪四步幼儿园主题审议五步法,议案的有哪四步

    议案的有哪四步提出,讨论,批准,实施2,软件开发五个主要step是什么你在开发软件的时候这5个step分别占1需求分析2设计(逻辑设计和物理设计)3编码4调试5运行3,为什么铁齿铜牙纪晓岚第四步纪晓.....

    问答 日期:2023-05-04

  • 小学美术课堂教学基本要求包括,新课改对小学美术教师有什么要求小学美术课堂教学基本要求包括,新课改对小学美术教师有什么要求

    新课改对小学美术教师有什么要求2,小学美术课程中的美术色彩知识教学一般应遵循哪些原则3,现在小学美术教师的要求是什么4,小学美术课堂教学的基本是什么过程1,新课改对小学美术教师有什么.....

    问答 日期:2023-05-04