首页 > 数学 > 经验 > 高一高二物理知识点梳理大全,高中物理知识总结

高一高二物理知识点梳理大全,高中物理知识总结

来源:整理 时间:2023-11-04 22:36:08 编辑:挖葱教案 手机版

本文目录一览

1,高中物理知识总结

一、力和运动————基础 1、受力分析及物体平衡 2、直线运动 3、牛顿定律 4、曲线运动和万有引力(天体运动) 5、机械能及守恒 6、动量守恒 7、机械振动和机械波二、电复磁学————重难点 1、电场 2、恒定电流 3、磁场 4、电磁感应 5、交变电流 6、电磁场和电磁波三、光学 1、光的传播 2、光的波动性 3、量子论初步 4、原子核 5、相对论四、热制学 1、分子热运动 2、固体、液体和气体实验汇总:1、长度的测量2、验证力的平行四边形3、打点计时器4、验证牛顿第二定律5、验证平抛运动6、机械能守恒定律的验证7、验证定量守恒定律8、用单摆测重力加速度9、用描记法画电场中的等势线10、描绘小灯泡的伏安特性曲线11、测定金属的电阻率12、把电流表改装成电压表13、闭合电路欧姆定律14、测电源的E和r14、练习使用示波器15、用多用电表探索黑zhidao箱中的电学原件16、用油膜法测分子的大小17、测定波的折射率18、双缝干涉测波长
经典力学:矢量的合成与分解;牛顿运动定知律1、2、3;直线运动和曲线运动;功和能。电磁学:带电粒子电场中的加速道与带电粒子电偏转与磁偏转,安培力;电内磁感应。热学:分子动理论近代物理:波粒二象性,相对容论,原子物理中的核结构与核反应,相对论。

{0}

2,人教版高一物理必修二机械能守恒定律知识点总结

在只有重力或弹力对物体做功的条件下(或者不受其他外力的作用下),物体的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总量保持不变。这个规律叫做机械能守恒定律。 E机=Ep+Ek机械能守恒条件是:只有重力(或弹簧弹力)做功。【即不考虑空气阻力及因其他摩擦产生热而损失能量】 有功能关系式中的 W除G外=△E机 可知:更广义的讲机械能守恒条件应是除了重力之外的力所做的功为零。 动能守恒定律:速度大小不变。用动能定理求变力做功:在某些问题中由于力F大小的变化或方向变化,所以不能直接由W=Fscosα求出变力F做功的值,此时可由其做功的结果——动能的变化来求变力F所做的功.在用动能定理解题时,如果物体在某个运动过程中包含有几个运动性质不同的分过程(如加速、减速的过程),此时,可以分段考虑,也可对全程考虑.如能对整个过程列式则可能使问题简化.在把各个力的功代入公式:W1+W2+…+Wn= mv末2- mv初2时,要把它们的数值连同符号代入,解题时要分清各过程中各个力做功的情况.机械能守恒定律的推论? 根据机械能守恒定律,当重力以外的力不做功,物体(或系统)的机械能守恒.显然,当重力以外的力做功不为零时,物体(或系统)的机械能要发生改变.重力以外的力做正功,物体(或系统)的机械能增加,重力以外的力做负功,物体(或系统)的机械能减少,且重力以外的力做多少功,物体(或系统)的机械能就改变多少.即重力以外的力做功的过程,就是机械能和其他形式的能相互转化的过程,在这一过程中,重力以外的力做的功是机械能改变的量度,即WG外=E2-E1.动能定理反映了合外力做的功和动能改变的关系,即合外力做功的过程,是物体的动能和其他形式的能量相互转化的过程,合外力所做的功是物体动能变化的量度,即W总=Ek2-Ek1.?重力做功的过程是重力势能和其他形式的能量相互转化的过程,重力做的功量度了重力势能的变化,即WG=Ep1-Ep2重力以外的力做功的过程是机械能和其他形式的能转化的过程,重力以外的力做的功量度了机械能的变化,即WG外=E2-E1作用于系统的滑动摩擦力和系统内物体间相对滑动的位移的乘积,在数值上等于系统内能的增量.即“摩擦生热”:Q=F滑·s相对,所以,F滑·s相对量度了机械能转化为内能的多少.?可见,静摩擦力即使对物体做功,由于相对位移为零而没有内能产生. E机o=E机t(或mgho+1/2m(v o)^2=mght+1/2m(v t)^2)
斜面是会移动得,突破点在这里,你想一下,不明白再问我。
http://ishare.iask.sina.com.cn/f/7952527.html自己看
机械能守恒定律在只有重力或弹力对物体做功的条件下,物体的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总量保持不变。这个规律叫做机械能守恒定律。机械能守恒条件 机械能守恒条件是:只有重力(或弹簧弹力)做功。【即不考虑空气阻力及因其他摩擦产生热而损失能量】 有功能关系式中的 W除G外=△E机 可知:更广义的讲机械能守恒条件应是除了重力之外的力所做的功为零。 当系统不受外力或所受外力之和为零,这个系统的总动量保持不变,叫动量守恒定律。 动能守恒定律:速度不变。

{1}

3,高中物理必修二知识点总结

高中物理必修 2 知识点总结 章节1、机械功具体内容①机械功的含义 ②机械功的计算 ①机械功原理 ②做功和能的转化主要相关公式▲功 W = Fs cos α ▲ 功的原理2、功和能 一 功 和 功 率W动 = W阻 = W有用 + W额外W输入 = W输出 + W损失3、功率①功率的含义 ②功率与力、速度的关系▲ 功率 P =P = Fv①功率与机械效率 ②机械的使用W t▲ 机械效率η=W有用 W总=P有用 P总4、人与机械1、动能的改变①动能 ②恒力做功与动能改变的关系 (实验 ③动能定理 ①重力势能 ②重力做功与重力势能的改变 ③弹性势能的改变1 2 mv 2 1 2 1 2 ▲动能定理 Fs= mv2 ? mv1 2 2▲动能 Ek = ▲重力势能 E p = mgh ▲ 重力做功二 能 的 转 化 与 守 恒2、势能的改变WG = E p1 ? E p 2 = ??E p①机械能的转化和守恒的实验 探索 ②机械能守恒定律 ③能量守恒定律 ①能量转化和转移的方向性 ▲ 只有重力作用下,机械能守恒3、能量守恒定 律1 2 1 mv2 + mgh2 = mv12 + mgh1 2 24、能源与可持 ②能源开发与可持续发展 续发展11、运动的合成 ①运动的独立性②运动合成与分解的方法 与分解①竖直下抛运动 ②竖直上抛运动 ▲ 竖直下抛vt = v0 + gt s = v0t +▲ 竖直上抛1 2 gt 2 1 2 gt 2三 抛 体 运 动2、竖直方向上 的抛体运动vt = v0 ? gt s = v0t ? t=①什么是平抛运动 ②平抛运动的规律 ①斜抛运动的轨迹 ②斜抛运动物体的射高和射程v0 v2 h= 0 g 2g 1 2 gt 2▲ 抛出点坐标原点, 任意时刻位置3、平抛运动x = v0ty=▲ 斜抛初速度 v04、斜抛运动v0 x = v0 cos θ v0 y = v0 sin θ①线速度 ②角速度 ③周期、频率和转速 ④线速度、 角速度、周期的关系 ▲ 线速度 v = ▲ 角速度 ω =?ts t1、匀速圆周运 动快慢的描述▲ 周期与频率 f = ▲ v= ①向心力及其方向 ②向心力的大小 ③向心加速度四 匀 速 圆 周 运 动2π r 2π ω= T T1 T▲ 向心力 F = mrω ▲ 向心加速度2F =mv2 r2、向心力与向 心加速度a = ω 2r 或 a =v2 r3、向心力的实 ②竖直平面内的圆周运动实例 例分析分析①转弯时的向心力实例分析4、离心运动①认识离心运动 ②离心机械 ③离心运动的危害及其防止2五 万 有 引 力 定 律 及 其 应 用 六 相 对 论 与 量 子 论 初 步1、万有引力定 ①行星运动的规律 律及其引力常 ②万有引力定律 ③引力常量的测定及其意义 量的测定①人造文星上天 ②预测未知天体▲ 万有引力定律 F = Gm1m2 r2▲ 第一宇宙速度2、万有引力定 律的应用v=Gm′ 7.9km / s r▲ 第二宇宙速度 11.2km / s ▲ 第三宇宙速度 16.7 km / s3、人类对太空 的不懈追求①古希腊人的探索 ②文艺复兴的撞击 ③牛顿的大综合 ④对太空的探索 ①高速世界的两个基本原理 ②时间延缓效应 ③长度缩短效应 ④质速关系 ⑤质能关系 ⑥时空弯曲 ▲ 相对论时空观?t =?t ′ 1? v2 c2 v2 c21、高速世界▲ 长度缩短效应 l ′ = l 1 ?▲ 质速关系 m =m0 1? v2 c2▲ 质能关系 E = mc22、量子世界1、“紫外灾难” 2、不连续的能量 3、物质的波粒二象性▲ 量子的能量 E = hν

{2}

4,高一物理必修二知识点总结

  不知道你们学的是哪本教材,我们这里都是用人教版,下面是我整理的一些主要知识点,希望可以帮到你   曲线运动   1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。   2.物体做直线或曲线运动的条件:   (已知当物体受到合外力F作用下,在F方向上便产生加速度a)   (1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;   (2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。   3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。   4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。   两分运动说明:   (1)在水平方向上由于不受力,将做匀速直线运动;   (2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。   5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下.   6.①水平分速度: ②竖直分速度: ③t秒末的合速度   ④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角 表示   7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。   8.描述匀速圆周运动快慢的物理量   (1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上   9.匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变   (2)角速度 :ω=φ/t(φ指转过的角度,转一圈φ为 ),单位 rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的   (3)周期T,频率f=1/T   (4)线速度、角速度及周期之间的关系:   10.向心力: 向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。   11.向心加速度: 描述线速度变化快慢,方向与向心力的方向相同,   12.注意的结论:   (1)由于 方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。   (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。   (3)做匀速圆周运动的物体受到的合外力就是向心力。   13.离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动   万有引力定律及其应用   1.万有引力定律: 引力常量G=6.67× N?m2/kg2   2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)   3.万有引力定律的应用:(中心天体质量M, 天体半径R, 天体表面重力加速度g )   (1)万有引力=向心力 (一个天体绕另一个天体作圆周运动时 )   (2)重力=万有引力   地面物体的重力加速度:mg = G g = G ≈9.8m/s2   高空物体的重力加速度:mg = G g = G <9.8m/s2   4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的。   由mg=mv2/R或由 = =7.9km/s   5.开普勒三大定律   6.利用万有引力定律计算天体质量   7.通过万有引力定律和向心力公式计算环绕速度   8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)   功、功率、机械能和能源   1.做功两要素:力和物体在力的方向上发生位移   2.功: 功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)   3.物体做正功负功问题 (将α理解为F与V所成的角,更为简单)   (1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,   如小球在水平桌面上滚动,桌面对球的支持力不做功。   (2)当α<90度时, cosα>0,W>0.这表示力F对物体做正功。   如人用力推车前进时,人的推力F对车做正功。   (3)当 α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。   如人用力阻碍车前进时,人的推力F对车做负功。   一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。   例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功   4.动能是标量,只有大小,没有方向。表达式   5.重力势能是标量,表达式   (1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。   (2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。   6.动能定理:   W为外力对物体所做的总功,m为物体质量,v为末速度, 为初速度   解答思路:   ①选取研究对象,明确它的运动过程。   ②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。   ③明确物体在过程始末状态的动能 和 。   ④列出动能定理的方程 。   7.机械能守恒定律: (只有重力或弹力做功,没有任何外力做功。)   解题思路:   ①选取研究对象----物体系或物体   ②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。   ③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。   ④根据机械能守恒定律列方程,进行求解。   8.功率的表达式: ,或者P=FV 功率:描述力对物体做功快慢;是标量,有正负   9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。   实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。   10、能量守恒定律及能量耗散   就这些了,用心去理解,相信你能行,有问题可以再交流。

5,高中物理知识点总结

 一、运动的描述   1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t ,a用Δv与t 比。   2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等a T平方。   3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。   二、力   1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。   2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑; 洛仑兹力安培力,二者实质是统一;相互垂直力最大,平行无力要切记。   3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹 ,平行四边形定法;合力大小随q变 ,只在最大最小间,多力合力合另边。   多力问题状态揭,正交分解来解决,三角函数能化解。   4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。   三、牛顿运动定律   1.F等ma,牛顿二定律,产生加速度,原因就是力。   合力与a同方向,速度变量定a向,a变小则u可大 ,只要a与u同向。   2.N、T等力是视重,mg乘积是实重; 超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零   四、曲线运动、万有引力   1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。   2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。   3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。   五、机械能与能量   1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。   2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。   3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。   六、电场 〖选修3--1〗   1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。   2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。   电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。   场能性质是电势,场线方向电势降。 场力做功是qU ,动能定理不能忘。   4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。   七、恒定电流〖选修3-1〗   1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。   正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。   2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。   电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。   3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。   4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。   路端电压内压降,和就等电动势,除于总阻电流是。   八、磁场〖选修3-1〗   1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。   2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。   3.BIL安培力,相互垂直要注意。   4.洛仑兹力安培力,力往左甩别忘记。   九、电磁感应〖选修3-2〗   1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。   感应电动势大小,磁通变化率知晓。   2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。   3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。   十、交流电〖选修3-2〗   1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。   中性面计时是正弦,平行面计时是余弦。   2.NBSω是最大值,有效值用热量来计算。   3.变压器供交流用,恒定电流不能用。   理想变压器,初级U I值,次级U I值,相等是原理。   电压之比值,正比匝数比;电流之比值,反比匝数比。   运用变压比,若求某匝数,化为匝伏比,方便地算出。   远距输电用,升压降流送,否则耗损大,用户后降压。  十一、气态方程〖选修3-3〗   研究气体定质量,确定状态找参量。绝对温度用大T,体积就是容积量。   压强分析封闭物,牛顿定律帮你忙。状态参量要找准,PV比T是恒量。   十二、热力学定律   1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。   正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。   2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。   十三、机械振动〖选修3--4〗   1.简谐振动要牢记,O为起点算位移,回复力的方向指,始终向平衡位置,   大小正比于位移,平衡位置u大极。   2.O点对称别忘记,振动强弱是振幅,振动快慢是周期,一周期走4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。   到质心摆长行,单摆具有等时性。   3.振动图像描方向,从底往顶是向上,从顶往底是下向;振动图像描位移,顶点底点大位移,正负符号方向指。   十四、机械波〖选修3--4〗   1.左行左坡上,右行右坡上。峰点谷点无方向。   2.顺着传播方向吧,从谷往峰想上爬,脚底总得往下蹬,上下振动迁不动。   3.不同时刻的图像,Δt四分一或三, 质点动向疑惑散,S等v t派用场。   十五、光学〖选修3-4〗   1.自行发光是光源,同种均匀直线传。若是遇见障碍物,传播路径要改变。   反射折射两定律,折射定律是重点。光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。   2.全反射,要牢记,入射光线在光密。入射角大于临界角,折射光线无处觅。   十六、物理光学   1.光是一种电磁波,能产生干涉和衍射。衍射有单缝和小孔,干涉有双缝和薄膜。单缝衍射中间宽,干涉(条纹)间距差不多。小孔衍射明暗环,薄膜干涉用处多。它可用来测工件,还可制成增透膜。泊松亮斑是衍射,干涉公式要把握。〖选修3-4〗   2.光照金属能生电,入射光线有极限。光电子动能大和小,与光子频率有关联。光电子数目多和少,与光线强弱紧相连。光电效应瞬间能发生,极限频率取决逸出功。〖选修3-5〗、   十七、动量 〖选修3--5〗   1.确定状态找动量,分析过程找冲量,同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。   2.确定状态找动量,分析过程找冲量,外力冲量若为零,初态末态动量同。  

6,高一的物理知识重点清单

高一上 物理期末考试知识点复习提纲专题一:运动的描述【知识要点】1.质点(A)(1)没有形状、大小,而具有质量的点。1(2)质点是一个理想化的物理模型,实际并不存在。(3)一个物体能否看成质点,并不取决于这个物体的大小,而是看在所研究的问题中物体的形状、大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问题具体分析。2.参考系(A)(1)物体相对于其他物体的位置变化,叫做机械运动,简称运动。(2)在描述一个物体运动时,选来作为标准的(即假定为不动的)另外的物体,叫做参考系。对参考系应明确以下几点:①对同一运动物体,选取不同的物体作参考系时,对物体的观察结果往往不同的。②在研究实际问题时,选取参考系的基本原则是能对研究对象的运动情况的描述得到尽量的简化,能够使解题显得简捷。③因为今后我们主要讨论地面上的物体的运动,所以通常取地面作为参照系3.路程和位移(A)(1)位移是表示质点位置变化的物理量。路程是质点运动轨迹的长度。(2)位移是矢量,可以用以初位置指向末位置的一条有向线段来表示。因此,位移的大小等于物体的初位置到末位置的直线距离。路程是标量,它是质点运动轨迹的长度。因此其大小与运动路径有关。(3)一般情况下,运动物体的路程与位移大小是不同的。只有当质点做单一方向的直线运动时,路程与位移的大小才相等。图1-1中质点轨迹ACB的长度是路程,AB是位移S。(4)在研究机械运动时,位移才是能用来描述位置变化的物理量。路程不能用来表达物体的确切位置。比如说某人从O点起走了50m路,我们就说不出终了位置在何处。4、速度、平均速度和瞬时速度(A)(1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。(2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内的位移为s, 则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。(3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率5、匀速直线运动(A)(1) 定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路程相等,质点的运动方向相同,质点在相等时间内的位移大小和路程相等。(2) 匀速直线运动的x—t图象和v-t图象(A)(1)位移图象(s-t图象)就是以纵轴表示位移,以横轴表示时间而作出的反映物体运动规律的数学图象,匀速直线运动的位移图线是通过坐标原点的一条直线。(2)匀速直线运动的v-t图象是一条平行于横轴(时间轴)的直线,如图2-4-1所示。由图可以得到速度的大小和方向,如v1=20m/s,v2=-10m/s,表明一个质点沿正方向以20m/s的速度运动,另一个反方向以10m/s速度运动。6、加速度(A)(1)加速度的定义:加速度是表示速度改变快慢的物理量,它等于速度的改变量跟发生这一改变量所用时间的比值,定义式:a= (2)加速度是矢量,它的方向是速度变化的方向(3)在变速直线运动中,若加速度的方向与速度方向相同,则质点做加速运动; 若加速度的方向与速度方向相反,则则质点做减速运动.7、用电火花计时器(或电磁打点计时器)研究匀变速直线运动(A)1、实验步骤:(1)把附有滑轮的长木板平放在实验桌上,将打点计时器固定在平板上,并接好电路(2)把一条细绳拴在小车上,细绳跨过定滑轮,下面吊着重量适当的钩码.(3)将纸带固定在小车尾部,并穿过打点计时器的限位孔(4)拉住纸带,将小车移动至靠近打点计时器处,先接通电源,后放开纸带.(5)断开电源,取下纸带(6)换上新的纸带,再重复做三次2、常见计算:(1) , (2) 8、匀变速直线运动的规律(A)(1).匀变速直线运动的速度公式vt=vo+at(减速:vt=vo-at)(2). 此式只适用于匀变速直线运动.(3). 匀变速直线运动的位移公式s=vot+at2/2(减速:s=vot-at2/2)(4)位移推论公式: (减速: )(5).初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数: s = aT2 (a----匀变速直线运动的加速度 T----每个时间间隔的时间)9、匀变速直线运动的x—t图象和v-t图象(A)10、自由落体运动(A)(1) 自由落体运动 物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。(2) 自由落体加速度(1)自由落体加速度也叫重力加速度,用g表示.(2)重力加速度是由于地球的引力产生的,因此,它的方向总是竖直向下.其大小在地球上不同地方略有不,在地球表面,纬度越高,重力加速度的值就越大,在赤道上,重力加速度的值最小,但这种差异并不大。(3)通常情况下取重力加速度g=10m/s2(3) 自由落体运动的规律vt=gt.H=gt2/2,vt2=2gh专题二:相互作用与运动规律【知识要点】11、力(A)1.力是物体对物体的作用。⑴力不能脱离物体而独立存在。⑵物体间的作用是相互的。2.力的三要素:力的大小、方向、作用点。3.力作用于物体产生的两个作用效果。⑴使受力物体发生形变或使受力物体的运动状态发生改变。4.力的分类⑴按照力的性质命名:重力、弹力、摩擦力等。⑵按照力的作用效果命名:拉力、推力、压力、支持力、动力、阻力、浮力、向心力等。12、重力(A)1.重力是由于地球的吸引而使物体受到的力⑴地球上的物体受到重力,施力物体是地球。⑵重力的方向总是竖直向下的。2.重心:物体的各个部分都受重力的作用,但从效果上看,我们可以认为各部分所受重力的作用都集中于一点,这个点就是物体所受重力的作用点,叫做物体的重心。① 质量均匀分布的有规则形状的均匀物体,它的重心在几何中心上。② 一般物体的重心不一定在几何中心上,可以在物体内,也可以在物体外。一般采用悬挂法。3.重力的大小:G=mg13、弹力(A)1.弹力⑴发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。⑵产生弹力必须具备两个条件:①两物体直接接触;②两物体的接触处发生弹性形变。2.弹力的方向:物体之间的正压力一定垂直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。3.弹力的大小弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大. 弹簧弹力:F = Kx (x为伸长量或压缩量,K为劲度系数)4.相互接触的物体是否存在弹力的判断方法如果物体间存在微小形变,不易觉察,这时可用假设法进行判定.14、摩擦力(A) (1 ) 滑动摩擦力: 说明 : a、FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于Gb、 为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力FN无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。 b、摩擦力可以作正功,也可以作负功,还可以不作功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。15、力的合成与分解(B)1.合力与分力 如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。2.共点力的合成⑴共点力几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。⑵力的合成方法 求几个已知力的合力叫做力的合成。a.若 和 在同一条直线上① 、 同向:合力 方向与 、 的方向一致② 、 反向:合力 ,方向与 、 这两个力中较大的那个力同向。b. 、 互成θ角——用力的平行四边形定则平行四边形定则:两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。求F 、 的合力公式: ( 为F1、F2的夹角) 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: F1-F2 F F1 +F2 (3) 合力可以大于分力、也可以小于分力、也可以等于分力 (4)两个分力成直角时,用勾股定理或三角函数。16、共点力作用下物体的平衡(A)1.共点力作用下物体的平衡状态(1)一个物体如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态(2)物体保持静止状态或做匀速直线运动时,其速度(包括大小和方向)不变,其加速度为零,这是共点力作用下物体处于平衡状态的运动学特征。2.共点力作用下物体的平衡条件共点力作用下物体的平衡条件是合力为零,亦即F合=0(1)二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。(2)三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡(3)若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有: F合x= F1x+ F2x + ………+ Fnx =0 F合y= F1y+ F2y + ………+ Fny =0 (按接触面分解或按运动方向分解)19、力学单位制(A)1.物理公式在确定物理量数量关系的同时,也确定了物理量的单位关系。基本单位就是根据物理量运算中的实际需要而选定的少数几个物理量单位;根据物理公式和基本单位确立的其它物理量的单位叫做导出单位。2.在物理力学中,选定长度、质量和时间的单位作为基本单位,与其它的导出单位一起组成了力学单位制。选用不同的基本单位,可以组成不同的力学单位制,其中最常用的基本单位是长度为米(m),质量为千克(kg),时间为秒(s),由此还可得到其它的导出单位,它们一起组成了力学的国际单位制。17、牛顿运动三定律(A和B)牛顿三大定律是力学中重要的定律,它是研究经典力学的基础。 1.牛顿第一定律 内容:任何物体都保持静止或匀速直线运动的状态,直到受到其它物体的作用力迫使它改变这种状态为止。 说明:物体都有维持静止和作匀速直线运动的趋势,因此物体的运动状态是由它的运动速度决定的,没有外力,它的运动状态是不会改变的。物体的这种性质称为惯性。所以牛顿第一定律也称为惯性定律。第一定律也阐明了力的概念。明确了力是物体间的相互作用,指出了是力改变了物体的运动状态。因为加速度是描写物体运动状态的变化,所以力是和加速度相联系的,而不是和速度相联系的。在日常生活中不注意这点,往往容易产生错觉。 注意:牛顿第一定律并不是在所有的参照系里都成立,实际上它只在惯性参照系里才成立。因此常常把牛顿第一定律是否成立,作为一个参照系是否惯性参照系的判据。 2.牛顿第二定律 内容:物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的惯性质量成反比。 第二定律定量描述了力作用的效果,定量地量度了物体的惯性大小。它是矢量式,并且是瞬时关系。 要强调的是:物体受到的合外力,会产生加速度,可能使物体的运动状态或速度发生改变,但是这种改变是和物体本身的运动状态有关的。 真空中,由于没有空气阻力,各种物体因为只受到重力,则无论它们的质量如何,都具有的相同的加速度。因此在作自由落体时,在相同的时间间隔中,它们的速度改变是相同的。 3.牛顿第三定律 内容:两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。 说明:要改变一个物体的运动状态,必须有其它物体和它相互作用。物体之间的相互作用是通过力体现的。并且指出力的作用是相互的,有作用必有反作用力。它们是作用在同一条直线上,大小相等,方向相反。 另需要注意: (1)作用力和反作用力是没有主次、先后之分。同时产生、同时消失。 (2)这一对力是作用在不同物体上,不可能抵消。 (3)作用力和反作用力必须是同一性质的力。 (4)与参照系无关。

7,高一到高二物理和化学知识归纳 重点

、力 物体的平衡 1、力:力是物体对物体的作用。 ⑴力是一种作用,可以通过直接接触实现(如弹力、摩擦力),也可以通过场来实现(重力、电场力、磁场力) ⑵力的性质:物质性(力不能脱离物体而独立存在);相互性(成对出现,遵循牛顿第三定律);矢量性(有大小和方向,遵从矢量运算法则);效果性(形变、改变物体运动状态,即产生加速度) ⑶力的要素:力的大小、方向和作用点称为力的三要素,它们共同影响力的作用效果。 力的描述:描述一个力,应描述力的三要素,除直接说明外,可以用力的图示和力的示意图的方法。 ⑷力的分类:按作用方式,可分为场力(重力、电场力)、接触力(弹力、摩擦力);接效果分,有动力、阻力、牵引力、向心力、恢复力等;接性质分,有重力、弹力、摩擦力、分子力等;按研究系统分,内力、外力。 2、重力:由于地球吸引,而使物体受到的力。 (1)重力的产生:由于地球的吸引而使物体受到的力叫重力。 (2)重力的大小:G=mg,可以用弹簧秤测量,重力的大小与物体的速度、加速度无关。 (3)重力的方向:竖直向下。 (4)重心:重力的作用点。重心的测定方法:悬挂法。重心的位置与物体形状的关系:质量分布均匀的物体,重心位置只与物体形状有关,其几何中心就是重心;质量分布不均匀的物体,其重心的位置除了跟形状有关外,还跟物体的质量分布有关。 3、弹力 (1)弹力的产生:发生弹性形变的物体,由于要恢复原来的形状,对跟它接触的物体产生力的作用,这种力叫弹力。 (2)产生的条件:两物体要相互接触;发生弹性形变。 (3)弹力的方向:①压力、支持力的方向总是垂直于接触面。 ②绳对物体的拉力总是沿着绳收缩的方向。 ③杆对物体的弹力不一定沿杆的方向。如果轻直杆只有两个端点受力而处于平衡状态,则轻杆两端对物体的弹力的方向一定沿杆的方向。 例题:如图所示,光滑但质量分布不均的小球的球心在O,重心在P,静止在竖直墙和桌边之间。试画出小球所受弹力。 解析:由于弹力的方向总是垂直于接触面,在A点,弹力F1应该垂直于球面所以沿半径方向指向球心O;在B点弹力F2垂直于墙面,因此也沿半径指向球心O。 注意弹力必须指向球心,而不一定指向重心。又由于F1、F2、G为共点力,重力的作用线必须经过O点,因此P和O必在同一竖直线上,P点可能在O的正上方(不稳定平衡),也可能在O的正下方(稳定平衡)。 例题: 如图所示,重力不可忽略的均匀杆被细绳拉住而静止,试画出杆所受的弹力。 解析:A端所受绳的拉力F1沿绳收缩的方向,因此沿绳向斜上方;B端所受的弹力F2垂直于水平面竖直向上。 由于此直杆的重力不可忽略,其两端受的力可能不沿杆的方向。 杆受的水平方向合力应该为零。由于杆的重力G竖直向下,因此杆的下端一定还受到向右的摩擦力f作用。 例题: 图中AC为竖直墙面,AB为均匀横梁,其重为G,处于水平位置。BC为支持横梁的轻杆,A、 B、C三处均用铰链连接。试画出横梁B端所受弹力的方向。 解析:轻杆BC只有两端受力,所以B端所受压力沿杆向斜下方,其反作用力轻杆对横梁的弹力F沿轻杆延长线方向斜向上方。 (4)弹力的大小:对有明显形变的弹簧、橡皮条等物体,弹力的大小可以由胡克定律计算。对没有明显形变的物体,如桌面、绳子等物体,弹力大小由物体的受力情况和运动情况共同决定,根据运动情况,利用平衡条件或动力学规律来计算。 胡克定律:在弹性限度内,弹簧的弹力与弹簧的伸长(或收缩)的长度x成正比,F=kx,k是劲度系数。除此之外,一般物体的弹力大小,就需 例题:如图所示,两物体重分别为G1、G2,两弹簧劲度分别为k1、k2,弹簧两端与物体和地面相连。用竖直向上的力缓慢向上拉G2,最后平衡时拉力F=G1+2G2,求该过程系统重力势能的增量。 解析:关键是搞清两个物体高度的增量Δh1和Δh2跟初、末状态两根弹簧的形变量Δx1、Δx2、Δx1/、Δx2/间的关系。 无拉力F时 Δx1=(G1+G2)/k1,Δx2= G2/k2,(Δx1、Δx2为压缩量) 加拉力F时 Δx1/=G2/k1,Δx2/= (G1+G2) /k2,(Δx1/、Δx2/为伸长量) 而Δh1=Δx1+Δx1/,Δh2=(Δx1/+Δx2/)+(Δx1+Δx2) 系统重力势能的增量ΔEp= G1?Δh1+G2?Δh2 整理后可得: 4、摩擦力 (1)摩擦力的产生;两个相互接触的物体,有相对运动趋势(或相对运动)时产生摩擦力。 (2)作用效果:总是要阻碍物体间的相对运动(或相对运动趋势)。 (3)产生的条件:接触面粗糙;相互接触且挤压;有相对运动(或相对运动趋势)。 (4)摩擦力的方向:总是与物体的相对运动方向(或相对运动趋势方向)相反。 (5)摩擦力的大小:静摩擦力的大小与外力的变化有关,而与正压力无关,要计算静摩擦力,就需根据物体的运动状态,利用平衡条件或动力学规律来计算求解,其可能的取值范围是0<Ff≤Fm;滑动摩擦力的大小与正压力成正比,即F=μFN,其中的FN表示正压力,不一定等于重力G;μ为动摩擦因数,与接触面的材料和状况有关。 例题:如图所示,用跟水平方向成α角的推力F推重量为G的木块沿天花板向右运动,木块和天花板间的动摩擦因数为μ,求木块所受的摩擦力大小。 解析:由竖直方向合力为零可得FN=Fsinα-G,因此有:f =μ(Fsinα-G) 例题:如图所示,A、B为两个相同木块,A、B间最大静摩擦力Fm=5N,水平面光滑。拉力F至少多大,A、B才会相对滑动? 解析:A、B间刚好发生相对滑动时,A、B间的相对运动状态处于一个临界状态,既可以认为发生了相对滑动,摩擦力是滑动摩擦力,其大小等于最大静摩擦力5N,也可以认为还没有发生相对滑动,因此A、B的加速度仍然相等。分别以A和整体为对象,运用牛顿第二定律,可得拉力大小至少为F=10N (研究物理问题经常会遇到临界状态。物体处于临界状态时,可以认为同时具有两个状态下的所有性质。) 例题: 小车向右做初速为零的匀加速运动,物体恰好沿车后壁匀速下滑。试分析下滑过程中物体所受摩擦力的方向和物体速度方向的关系。 解析:物体受的滑动摩擦力的始终和小车的后壁平行,方向竖直向上,而物体的运动轨迹为抛物线,相对于地面的速度方向不断改变(竖直分速度大小保持不变,水平分速度逐渐增大),所以摩擦力方向和运动方向间的夹角可能取90°和180°间的任意值。 5、矢量和标量 (1)在物理学中物理量有两种:一是矢量(即既有大小,又有方向的物理量),如力、位移、加速度等;另一种是标量(只有大小,没有方向的物理量),如体积、路程、功、能等。 (2)矢量的合成均遵循平行四边形法则,而标量的运算则用代数加减。 (3)一直线上的矢量合成,可先规定正方向,与正方向相同的矢量方向均为正,与之相反则为负,然后进行加减。 6、力的合成 (1)一个力如果产生的效果与几个力共同作用所产生的效果相同,这个力就叫做那几个的合力,而那几个力就叫做这个力的分力,求几个力的合力叫力的合成。 (2)力的合成遵循平行四边形法则,如求两个互成角度的共点力F、F的合力,可以把表示F、F的线段作为邻边,作一平行四边形,它的对角线即表示合力的大小和方向。 (3)共点的两个力F、F的合力F的大小,与两者的夹角有关,两个分力同向时合力最大,反向时合力最小,即合力的取值范围为。 7、力的分解 (1)由一个已知力求解它的分力叫力的分解。 (2)力的分解是力的合成的逆过程,也同样遵循平行四边形法则。 (3)由平行四边形法则可知,力的合成是唯一的,而力的分解则可能多解。但在处理实际问题时,力的分解必须依据力的作用效果,答案同样是唯一的。 (4)把力沿着相互垂直的两个方向分解叫正交分解。如果物体受到多个力的共同作用时,一般常用正交分解法,将各个力都分解到相互垂直的两个方向上,然后分别沿两个方向上求解。 平行四边形定则实质上是一种等效替换的方法。一个矢量(合矢量)的作用效果和另外几个矢量(分矢量)共同作用的效果相同,就可以用这一个矢量代替那几个矢量,也可以用那几个矢量代替这一个矢量,而不改变原来的作用效果。 由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零。 在分析同一个问题时,合矢量和分矢量不能同时使用。也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量。 矢量的合成分解,一定要认真作图。在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线。各个矢量的大小和方向一定要画得合理。在应用正交分解时,两个分矢量和合矢量的夹角一定要分清哪个是大锐角,哪个是小锐角,不可随意画成45°。 例题: A的质量是m,A、B始终相对静止,共同沿水平面向右运动。当a1=0时和a2=0.75g时,B对A的作用力FB各多大? 解析:一定要审清题:B对A的作用力FB是B对A的支持力和摩擦力的合力。而A所受重力G=mg和FB的合力是F=ma。 当a1=0时,G与 FB二力平衡,所以FB大小为mg,方向竖直向上。 当a2=0.75g时,用平行四边形定则作图:先画出重力(包括大小和方向),再画出A所受合力F的大小和方向,再根据平行四边形定则画出FB。由已知可得FB的大小FB=1.25mg,方向与竖直方向成37o角斜向右上方。 例题: 轻绳AB总长l,用轻滑轮悬挂重G的物体。绳能承受的最大拉力是2G,将A端固定,将B端缓慢向右移动d而使绳不断,求d的最大可能值。 解析:以与滑轮接触的那一小段绳子为研究对象,在任何一个平衡位置都在滑轮对它的压力(大小为G)和绳的拉力F1、F2共同作用下静止。而同一根绳子上的拉力大小F1、F2总是相等的,它们的合力N是压力G的平衡力,方向竖直向上。因此以F1、F2为分力做力的合成的平行四边形一定是菱形。利用菱形对角线互相垂直平分的性质,结合相似形知识可得d∶l =∶4,所以d最大为 8、两个力的合力与两个力大小的关系 两力同向时合力最大:F=F+F,方向与两力同向; 两力方向相反时,合力最小:F=,方向与两力较大者同向; 两力成某一角度θ时,三角形每一条边对应一个力,由几何知识知道:两边之和大于第三边,两边之差小于第三边,即此合力的范围是。。 合力可以大于等于两力中的任一个力,也可以小于任一个力.当两力大小一定时,合力随两力夹角的增大而减小,随两力夹角的减小而增大. 9、共点力平衡的几个基本概念 (1)共点力:几个力作用于一点或几个力的作用线交于一点,这几个力称为共点力。 (2)物体的平衡状态:静止(速度、加速度都等于零)、匀速直线运动、匀速转动。 (3)共点力作用下物体的平衡条件:物体所受的各力的合力为零。 1、平衡条件的推论 推论(1):若干力作用于物体使物体平衡,则其中任意一个力必与其他的力的合力等大、反向. 推论(2):三个力作用于物体使物体平衡,若三个力彼此不平行.则这三个力必共点(作用线交于同一点). 推论(3):三个力作用于物体使物体平衡,则这三个力的作用线必构成封闭的三角形. 2、三力汇交原理:物体在作用线共面的三个非平行力作用处于平衡状态时,这三个力的作用线必相交于一点. 3、解答平衡问题的常用方法 (1)拉密原理:如果在共点的三个力作用下物体处于平衡状态,那么各力的大小分别与另外两个力夹角的正弦成正比,其表达式为 (2)相似三角形法. (3)正交分解法:共点力作用下物体的平衡条件(∑F=0)是合外力为零,求合力需要应用平行四边形定则,比较麻烦,通常用正交分解法把矢量运算转化为标量运算。 4、动态平衡问题: 动态平衡问题是指通过控制某一物理量,使物体的状态发生缓慢变化,而在这变化过程中,物体又始终处于一系列的平衡状态. 例题: 重G的光滑小球静止在固定斜面和竖直挡板之间。若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F1、F2各如何变化? 解析:由于挡板是缓慢转动的,可以认为每个时刻小球都处于静止状态,因此所受合力为零。应用三角形定则,G、F1、F2三个矢量应组成封闭三角形,其中G的大小、方向始终保持不变;F1的方向不变;F2的起点在G的终点处,而终点必须在F1所在的直线上,由作图可知,挡板逆时针转动90°过程,F2矢量也逆时针转动90°,因此F1逐渐变小,F2先变小后变大。(当F2⊥F1,即挡板与斜面垂直时,F2最小) 5、物体的受力分析 ⑴明确研究对象 在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体。在解决比较复杂的问题时,灵活地选取研究对象可以使问题简洁地得到解决。研究对象确定以后,只分析研究对象以外的物体施予研究对象的力(既研究对象所受的外力),而不分析研究对象施予外界的力。 ⑵按顺序找力 必须是先场力(重力、电场力、磁场力),后接触力;接触力中必须先弹力,后摩擦力(只有在有弹力的接触面之间才可能有摩擦力)。 ⑶只画性质力,不画效果力 画受力图时,只能按力的性质分类画力,不能按作用效果(拉力、压力、向心力等)画力,否则将出现重复。 ⑷需要合成或分解时,必须画出相应的平行四边形(或三角形) 在解同一个问题时,分析了合力就不能再分析分力;分析了分力就不能再分析合力,千万不可重复。 例题: 如图所示,倾角为θ的斜面A固定在水平面上。木块B、C的质量分别为M、m,始终保持相对静止,共同沿斜面下滑。B的上表面保持水平,A、B间的动摩擦因数为μ。⑴当B、C共同匀速下滑;⑵当B、C共同加速下滑时,分别求B、C所受的各力。 解析:⑴先分析C受的力。这时以C为研究对象,重力G1=mg,B对C的弹力竖直向上,大小N1= mg,由于C在水平方向没有加速度,所以B、C间无摩擦力,即f1=0。 再分析B受的力,在分析 B与A间的弹力N2和摩擦力f2时,以BC整体为对象较好,A对该整体的弹力和摩擦力就是A对B的弹力N2和摩擦力f2,得到B受4个力作用:重力G2=Mg,C对B的压力竖直向下,大小N1= mg,A对B的弹力N2=(M+m)gcosθ,A对B的摩擦力f2=(M+m)gsinθ ⑵由于B、C 共同加速下滑,加速度相同,所以先以B、C整体为对象求A对B的弹力N2、摩擦力f2,并求出a ;再以C为对象求B、C间的弹力、摩擦力。 这里,f2是滑动摩擦力N2=(M+m)gcosθ, f2=μN2=μ(M+m)gcosθ 沿斜面方向用牛顿第二定律:(M+m)gsinθ-μ(M+m)gcosθ=(M+m)a 可得a=g(sinθ-μcosθ)。B、C间的弹力N1、摩擦力f1则应以C为对象求得。 由于C所受合力沿斜面向下,而所受的3个力的方向都在水平或竖直方向。这种情况下,比较简便的方法是以水平、竖直方向建立直角坐标系,分解加速度a。 分别沿水平、竖直方向用牛顿第二定律: f1=macosθ,mg-N1= masinθ, 可得:f1=mg(sinθ-μcosθ) cosθ N1= mg(cosθ+μsinθ)cosθ 由本题可以知道:①灵活地选取研究对象可以使问题简化;②灵活选定坐标系的方向也可以使计算简化;③在物体的受力图的旁边标出物体的速度、加速度的方向,有助于确定摩擦力方向,也有助于用牛顿第二定律建立方程时保证使合力方向和加速度方向相同。 6、物体平衡问题的一般解题步骤 (1)审清题意,选好研究对象。 (2)隔离研究对象,分析物体所受外力,画出物体受力图。 (3)建立坐标系或确定力的正方向. (4)列出力的平衡方程并解方程. (5)对所得结果进行检验和讨论. 例题: 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动。探测器通过喷气而获得推动力。以下关于喷气方向的描述中正确的是 A.探测器加速运动时,沿直线向后喷气 B.探测器加速运动时,竖直向下喷气 C.探测器匀速运动时,竖直向下喷气 解析:探测器沿直线加速运动时,所受合力F合方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,因此喷气方向斜向下方。匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。选C 例题:重G的均匀绳两端悬于水平天花板上的A、B两点。静止时绳两端的切线方向与天花板成α角。求绳的A端所受拉力F1和绳中点C处的张力F2。 解析:以AC段绳为研究对象,根据判定定理,虽然AC所受的三个力分别作用在不同的点(如图中的A、C、P点),但它们必为共点力。设它们延长线的交点为O,用平行四边形定则作图可得: 例题:用与竖直方向成α=30°斜向右上方,大小为F的推力把一个重量为G的木块压在粗糙竖直墙上保持静止。求墙对木块的正压力大小N和墙对木块的摩擦力大小f。 解析:从分析木块受力知,重力为G,竖直向下,推力F与竖直成30°斜向右上方,墙对木块的弹力大小跟F的水平分力平衡,所以N=F/2,墙对木块的摩擦力是静摩擦力,其大小和方向由F的竖直分力和重力大小的关系而决定: 当时,f=0;当时,,方向竖直向下;当时,,方向竖直向上。 例题:有一个直角支架AOB,AO水平放置,表面粗糙, OB竖直向下,表面光滑。AO上套有小环P,OB上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图所示)。现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力FN和摩擦力f的变化情况是 A.FN不变,f变大 B.FN不变,f变小 C.FN变大,f变大 D.FN变大,f变小 解析:以两环和细绳整体为对象求FN,可知竖直方向上始终二力平衡,FN=2mg不变;以Q环为对象,在重力、细绳拉力F和OB压力N作用下平衡,设细绳和竖直方向的夹角为α,则P环向左移的过程中α将减小,N=mgtanα也将减小。再以整体为对象,水平方向只有OB对Q的压力N和OA 对P环的摩擦力f作用,因此f=N也减小。答案选B。 只是一部分 还有好多显示不出来
文章TAG:高一高一高二高二物理高一高二物理知识点梳理大全

最近更新

相关文章