首页 > 英语 > 知识 > 高中数学核心素养的六大要素,数学核心素养有哪些的最新相关信息

高中数学核心素养的六大要素,数学核心素养有哪些的最新相关信息

来源:整理 时间:2023-05-01 09:07:19 编辑:挖葱教案 手机版

1,数学核心素养有哪些的最新相关信息

最新课改提出的一个名词,我们老师说了,以后没有什么三维目标(知识与技能、过程与方法、情感态度价值观),只会有核心素养这个概念。新课改之后,会挂掉一大批优秀教师,也会涌现出一大批优秀教师
(一)理解数的意义与数的联系,培养数感。(二)经历符号化过程,培养符号意识。(三)实践操作与数学思考相结合,培养空间观念(四)经历统计活动的全过程,培养统计观念(五)注重数学与生活的联系,培养数学应用意识

数学核心素养有哪些的最新相关信息

2,什么是数学核心素养

数学素养是指当前或未来的生活中为满足个人成为一个会关心、会思考的市民的需要而具备的认识、理解数学在自然、社会生活中的地位和能力,做出数学判断的能力,以及参与数学活动的能力。”数学素养是人们通过数学的学习建立起来的认识、理解和处理周围事物时所具备的品质,通常是在人们与周围环境产生相互作用时所表现出来的思考方式和解决问题的策略。
数学核心素养可以理解为学生学习数学应当达成的有特定意义的综合性能力,核心素养不是指具体的知识与技能,也不是一般意义上的数学能力。核心素养基于数学知识技能,又高于具体的数学知识技能。核心素养反映数学本质与数学思想,是在数学学习过程中形成的,具有综合性、整体性和持久性。数学核心素养与数学课程的目标和内容直接相关,对于理解数学学科本质,设计数学教学,以及开展数学评价等有着重要的意义和价值。

什么是数学核心素养

3,高中数学如何培养学生核心素养

一、数学核心素养的界定数学作为一门重要学科,不仅是一种应用工具,还是一种理性思维模式,上升到更高层次来说,更是一种素养,即数学素养。在一般教学理论中,数学素养指的是在应用知识的基础上,对数学基础知识、技能、思想方法、应用的意识与能力。这就要求学生在掌握基础知识的前提下,转换思维模式,随机应变,发挥自身数学素养。数学核心素养一般来说是指学生能把所学知识进行转换,从数学角度,通过缜密的逻辑思维,科学的判断方法解决问题的意识和能力。从专业层次来说,数学核心素养指的是学习者在解决相关问题的时候,能通过数学背景和本质素养,运用正确、规范的数学语言表达自身的数学思想素养。解决问题的时候,态度明确、观点科学、思维清晰,既能运用数学定律,又能结合新思想、新概念的数学素养,面对现实中各种问题,能够有条有理地进行简化和量化,从数学思维出发,从事物各个角度寻找解决问题方法的素养。二、数学核心素养的培养1.教学设计兼顾知识取向和文化取向教学设计的价值取向包括知识取向和文化取向。知识取向主要指教材上的知识内容。2.注重培养学生的数学思维在众多学科中,数学是锻炼人思维模式的主要科学,反之,思维则是数学的灵魂,因此可以说,数学和思维是紧密相连、融会贯通的。学好数学,要以思维为基础,在获得数学知识的同时,提高解决问题能力,数学核心素养便能得到提高。3.通过教学评价检查核心素养学校中最直接的教学评价是作业和考试,教师设计考试试题时,既要遵循教育部课程标准,准确反映数学学科对学生知识和技能的要求,又要立足维度、梯度和相关度进行最优化设计,注重对学生素养的考察。所谓的维度,指要考查的知识技能。梯度指考查的试题要有阶梯性,对于不同解答能给出相应的具有阶梯性的合理评价。相关度指同一试题里面,考查的知识点要做到交汇,可以是章节内的知识点的交汇处,也可以是学科内的知识点的交汇处。总而言之,教师进行教学设计的时候,既要有微观的小目标,让学生掌握所学知识,又要在传授知识的时候,以培养学生数学核心素养为大目标。

高中数学如何培养学生核心素养

4,数学教学如何培养核心素养

数学考验的的思维逻辑能力,核心素养我认为是就是常说的举一反三,独立思考,学以致用。通过一点,去推演出一条线,再去铺成一个面。所以,与其说教他们如何计算推倒,不如说教他们如何思考,一道题,教他们的重点在于思维的方向,而不是表面上的计算步骤。比如得到一个结果,需要什么样的条件,如何才能达到这些条件,这种逆向思维就是最常见的方法,而且要不断训练他们这种独立解决问题的能力。还有一点就是对数学的兴趣,对思考的兴趣,要让他们体会数学的乐趣,达到学以致用的目的。小学里的数学题经常会以买菜、排队什么的去命题,其实就是在引导孩子们学以致用,如何用更合适的方法达到这个目的,也是很重要的。
1.数学核心素养内涵概述数学核心素养是现代人们适应社会、迎接挑战的必备素养。它不是某一种具体的数学能力,不能简单地描述。我们可以从国际和国内两方面,对数学核心素养的概念及其内涵进行解读。在国际上,从2011年美国21世纪核心素养联盟发布的《p21共同核心工具包》里我们可以看到,在其建立的关于数学的具体化的素养指标体系里,数学核心素养被具体地表示为创新能力、沟通与合作、创造性与问题解决、自我认识与自我调控、批判性思维、学会学习与终身学习等11个方面。这些指标具有很强的操作性、指导性和综合性。我们应该认识到,国际社会通过倡导核心素养来引导教育更加关注“复杂、真实的现实世界”,更加关注培养未来公民必备品格和关键能力。因此,要全面理解数学核心素养,首先要与数学的学科特色相结合,但不能够仅仅只关注这一门学科,而应该运用跨学科的思维,从各个不同的角度和方位进行学习和理解。另一方面,纵观国内目前的研究,在数学核心素养这一概念及其内涵的界定上,国内学者尚未给出一个统一的意见。有学者将数学核心素养分解为以数学知识为核心培养出的数学核心能力、数学思维、数学态度等几个方面,但教育学界也有其他的一些解读,例如《义务教育数学课程标准(2011)》中就认为,数学核心素养是学生在对数学进行学习的过程中所感悟和锻炼出的综合素质,在课堂教学中要关注学生创新意识和创新能力的培养,关注学生自我学习能力的养成,通过课堂教学活动让学生感悟数学的基本思想,积累数学思维活动和实践活动的经验。它并不是某一特定的、单独的素养,而具有综合性、阶段性与持久性的特点。同时,还有一些学者则坚持数学思维品质和关键能力才是数学核心素养的真正内涵。这些定义都从不同角度对数学核心素养的内涵进行了界定,一方面能够帮助我们更好地理解数学核心素养的本质,另一方面也说明了数学核心素养内涵的丰富性与复杂性,仍然需要研究者们进行不断深入地探究才能准确把握。2.小学数学核心素养的培养2.1 培养数学意识,增强学生数感要培养小学生的数学核心素养,首先就要从他们的数学意识和数感着手。数学意识是数学思维的一个重要组成部分,良好的数字意识能够帮助锻炼学生以数学的方式进行思考,从而培养其数学思维;数感则与科学的直觉有着密切的联系,增强学生的数感对于培养他们的数学核心素养来讲也是非常重要的一项任务。实践证明,拥有优秀的数学意识者往往在面对数字及运算时显现出非常高的敏锐度,拥有极强的数感,能够将自身所学的数学知识运用到现实生活当中去,能够发现和分析实际生活中的各种数据特征、数量关系、数学问题等等。对于小学生而言,空洞乏味的意识说教无疑是毫无作用的,要培养他们的数学意识和数感,需要教师巧妙地把数学与现实生活联系起来,让学生从生活中发现数学、学习数学、培养数学意识与能力。同理我们可以发现,由于小学阶段的特殊性,相较于其他年级和阶段的教材而言,小学数学教材明显体现出趣味性、现实性的特点,课本里常常有非常多的与现实生活情境相关的图片和文字,以此来吸引小学生的注意力和兴趣。由此,教师也应该从中得到启示,在小学数学的教学中,要注意运用多种贴近现实的方式来吸引学生的注意力,让他们学会把数学和现实生活情境进行联想,用数学眼光去发现问题、思考问题、解决问题。例如,在“分类”这一环节的教学中,教师可以灵活地运用玩具、书籍、作业本、糖果等这些日常用品,把他们随便地进行摆放并问学生“这样摆放出来好不好看呢?看上去整齐吗?哪些东西应该摆放在一起才比较好看呢?”然后再让一名学生重新整理,其余学生观察整理过程,再引导学生明白分类的标准。在了解分类的定义后,再利用图片创设商店货架情境,并提出问题:图中货架有几个,有哪些物品,说一说如何将这些物品摆放整齐通过小组讨论,最终找出答案。2.2 在课堂教学中利用情境教学培养核心素养通过教育心理学的研究我们可以发现,问题往往是一切思考的开端。对于小学生而言,他们正处于思维能力发展的重要阶段,这个阶段的学生对各种未知事物的探索欲强、好奇心重,常常有各种各样的问题。教师要充分抓住他们的这一特点,在平常的教学活动中要注意运用多种新奇有趣的教学方法来吸引学生的兴趣,创设相关的问题情境,让学生充分融入到情境中去学习和探索,挖掘学生的认知潜能。例如在“毫升”这一环节的教学中,教师可以创设“动物酒量大赛”的情境,让动物们用不同容量的杯子喝酒,然后问学生“大象喝了3杯,老虎喝了6杯,老虎就一定喝得多吗?”“大象喝的一杯酒等于老虎的几杯呢?”等问题,以引导学生去认识不同的计量单位,并探究和学习他们之间的相互关系。通过寓教于乐的方式,让小学生爱上数学并培养问题解决能力。2.3 培养学生的质疑精神创新是民族进步的灵魂,应当融入于教育之中,从小就培养学生的创新意识和能力,这也是教育的重要目标。实践与

5,如何培养高中生的数学核心素养方法浅谈

对于数学素养的解释,到目前为止还没有一个严格的、统一的定义。有人认为“数学素养”是人在先天基础上,受后天环境、数学教育等影响,所获得的数学知识技能、数学思想方法、数学能力、数学观念和数学思维品质等融于身心的一种比较稳定的心理状态。用南开大学顾沛教授的话说:“数学素养”就是把所学的数学知识都排出或忘掉后剩下的东西。 小学生的数学素养包括数感、符号意识、空间观念、统计观念、数学应用意识五种数学意识,数学思维、数学理解、数学交流、解决问题四种数学能力以及数学价值观的发展。 下面我从以下三个方面和大家谈谈我对培养学生数学素养的肤浅认识:一、用数学的视角去认识世界。二、用数学的方式去思考问题。三、用数学的方法解决问题。 首先看第一个方面:用数学的视角去认识世界——数学意识的培养。 什么是“数学意识”呢?举一个例子,假如学生会计算“48÷4”,说明学生具有除法的知识与技能。学生会解“有48个苹果,平均每人分4个苹果,可以分给多少人?”,说明学生具有一定的分析问题、解决问题的能力,但都不能说明学生具有数学意识。而在体育课上,48位学生在跳长绳,教师共准备了4根长绳,由此学生能想到“48÷4”这个算式,这就说明学生具有一定的数学意识了。 (一) 理解数的意义与数的联系,培养数感。 在北京自然博物馆有一块展板:“1983年初在东北地区进行的航行调查表明,在7000平方米的山林中仅发现两只老虎,因此东北虎被列为一级保护动物。”对外经贸大学的小杨认为:一个标准的操场都比7000平方米大。如果在7000平方米的范围里就有两只老虎,那么老虎的数量应该很多,怎么还会因此被列为一级保护动物呢?那为什么那么多的参观者对此说明都熟视无睹,而小杨却能发现其中的问题呢?一方面我认为小杨善于观察、思考,另一方面说明小杨有很好的数感。 “数感”,就是对数的本质的理解和感觉。数的本质是“多与少”或者“大与小”,从而过渡到数的顺序。有关“数感”问题我们可以追溯到动物的感知,比如说—条狗,它可能敢与一匹狼争斗,但如果有两匹狼它就会害怕,如果面对一群狼它就会逃跑。这说明动物也知道“多与少”。在《数:科学的语言》一书中记载了这样一件事:一只乌鸦在一家庄园的望楼顶上建了个鸟巢,庄园主对此很生气,决心杀死这只乌鸦。可是,每当庄园主走进望楼,乌鸦就离巢而去,直到庄园主走出望楼才回巢。庄园主就想了一个办法,他找来—个朋友,两人一起进去,然后走出一人,希望留下一个人去杀乌鸦,但是乌鸦并没有上当回巢。后来又三人进去两人出来,四人进去三人出来,依然如故。直到五人进去四人出来,乌鸦才分辨不清,回巢了。这说明乌鸦关于数的悟性至少可以分辨到4或5。如果人不会数数的话,能辨别到几呢?实验表明,人也只能辨别到4或5。由此可以推断,在数学方面,发明了计数之后,人类才与动物产生了本质的差异。有了“多少”这一概念,人类才能理解“有序”、“后继数”等概念。从l开始,借助“后继数”,便形成了自然数系;通过自然数的四则运算,形成了有理数系;通过有理数的代数运算,最终形成了实数系。所以,“多少”的概念,以及由其自然产生而不是通过运算产生的自然数,才是数学最本质的概念,也是小学数学的根基。因此,培养小学生的“数感”是低学段教学的重点。 其实学生入学前就已经知道了不少数,但那只是他们凭生活经验认识的数,对数他们只是有一种非常“肤浅”的表层认识,我们的任务就是让这些成人看起来非常抽象的数,在孩子的脑子中逐渐丰富起来,富有“数的内涵”。一年级上册第五单元学习11~20各数的认识,本节课的教学重点是,让学生通过动手操作初步认识和数位“个位”、“十位” 和 计数单位“一”、“十”;理解同一数字在不同位置表示不同的数值。一上课我通过猜数游戏引出“11”这个数,然后要求学生把11根小棒摆在桌面上,让别人一眼就能看出是11根。当学生把11根分成10根和1根两部分后,接着让他们把10根捆在一起。这时告诉大家,和同学们一样,数也有自己的位置,并出示数位筒,认识个位和十位。1根小棒表示1个一应放在个位筒里,1捆小棒表示1个十应放在十位筒里。另外,学生通过1个十和10个一的相互转化过程,体会 “数位”“计数单位”概念的实际意义,建立“数位”和“计数单位”的概念。同时,“数位筒”的教学又在不知不觉中对后面“份”的概念的教学起到了非常微妙的作用,从份的概念来分析,把这“10”根小棒捆成1捆,就是把10根小棒看成1份。学完后我问学生当你看到20你想到了什么?刘钰杰说:“我穿20号的鞋子。”刘翔宇说;“20十位上是2,个位上是0。”杜雨萌说:“我有20支新铅笔。”丁中岚说:“20比11大多了。”如果我们不给孩子说的自由,大概就没机会知道孩子心中的数有如此丰富的内涵了。 (二)经历符号化过程,培养符号意识。 英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”符号意识,主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。 学生在生活中能接触到很多像停车标志、奥运五环标志等用符号表示的情境,所以有一定的符号经验。上学期学习“统计我们的鞋码”时,我就利用学生已有的符号经验,鼓励他们用自己喜欢的方式进行统计,有的学生写数,有的画“√”,还有的用“○、△”等图形表示。记得王老师在教学“用数对确定位置”时,先通过呈现学生熟悉的教室里的座位这一具体场景,激活学生头脑中已有的描述物体位置的经验;通过交流,学生产生用一致的方式来表示位置的需求。然后把具体的场景图逐步抽象成圆圈图、网络图这种平面图,并让经历用数对表示位置的过程。这样学生就经历了“具体事物——个性化地符号表示——学会数学化表示”的学习过程,体会到引入符号的必要性以及数学符号的简洁与实用,培养了学生的符号意识,发展空间观念。 当然数学符号的产生和发展过程并不是一帆风顺的,如,阿拉伯数字的诞生和使用就是一个漫长的过程,我们可以结合数的认识的教学向学生介绍数字诞生的历史,让学生了解数字符号的发展史,感受数学文化的无穷魅力

6,如何提升学生的数学核心素养

原发布者:龙源期刊网摘要:数学学科中的具体体现,从提升教师素质和意识、精心课程安排、探索教学模式、做好教学评价等方面,探讨了小学数学教育中强化学生核心素养培养的方法。关键词:小学数学教育;核心素养;培养方法为了持续推进教育改革,教育部在2014年提出了《关于全面深化课题改革,落实立德树人根本任务的意见》,意见中明确提出了要加强学生的“核心素养培养”,教育部门要制定相应的培养学生核心素养的机制和学业质量评价体系。数学作为一门重要的基础学科,如何在教学过程中践行学生核心素养培养显得尤为重要。因此,为了顺应教育改革的趋势,切实提升学生核心素养很有必要,本文围绕小学数学教育中强化学生核心素养培养的方法进行讨论,为切实做好素养教育建言献策。一、核心素养的内涵及在数学学科中的体现1.核心素养的内涵。数学教育研究具有教育学、心理学与数学双逻辑起点,数学教学问题的研究需沿着“教与学对应的原理”和“教与数学对应的原理”双重轨道进行。心理学研究表明,义务教育阶段的小学生处于6~12岁的童年期,年龄跨度大,心理发展变化快,小学生的认知、思维、表达乃至个性品质都经历巨大变化。皮亚杰认为这时期儿童认知的发展是一个跳跃式的过程,不同发展阶段都有其质的特征,这是在小学数学核
如何提升学生的数学核心素养? 一、基于数学核心素养的数学教学 教什么,如何教?这是教师教学的永恒课题。基于数学核心素养的教师数学教学,首先要更新观念。培养并提升核心素养,不能仅仅依赖模仿、记忆,更需要理解、感悟,需要主动、自觉,将“学生为本”的理念与教学实际有机结合。 1整体把握数学课程 基于数学核心素养的数学教学,整体理解数学课程是基础。高中数学课程是一个有机整体,要整体理解数学课程性质与理念,整体掌握数学课程目标,特别需要整体感悟数学核心素养,整体认识数学课程内容结构—主线—主题—关键概念、定理、模型、思想方法、应用,整体设计与实施教学。例如,以鸡兔同笼为例。在小学,可以使用“列举方法”,也可以利用“逼近方法”,还可以使用“假设方法”,在今后的学习中,这些方法依然会发挥作用。但更需要重视的是学习“方程组方法”。因为数学教学不仅是为了解决某个具体问题,更需要思考如何解决一类问题,更大的一类问题。把所有鸡兔同笼问题变成一个数学问题,给出求解的一般方法—运算程序。不仅如此,还可以为初中引入二元一次方程组奠定基础,解决更大一类问题。到了高中,还可以进一步从解析几何、向量的角度解读……在这一过程中,学生会不断感悟、理解抽象、推理、直观的作用,得到新的数学模型,扩大应用范围,提升关键能力,改善思维品质。 2主题(单元)教学 基于数学核心素养的数学教学,要求教师能从一节一节的教学中跳出来,以“主题(单元)”作为教学的基本思考对象。可以以“章”作为单元,如将“三角函数”作为教学设计单元;也可以以数学中的重要主题为教学设计单元,如“距离”或“几何度量关系:距离、角度”等;也可以以数学中通性通法为单元,如“模型与待定系数”等。这是深度学习的核心,是深度学习的抓手,也是整体把握数学课程的抓手,可突出本质—数学核心素养,有利于教学方式多样化,把“教”与“学”结合起来,促进学生自主学习;有助于提高数学教师专业水平(数学、教育教学理论、实践),这是数学骨干教师的基本功,不是教教材,而是创造性地使用教材教数学。 主题(单元)教学的要素,最重要的是进行整体分析,包括数学分析、标准分析、学情分析、教材对比分析、重点(本质、核心素养)分析及教学方式分析,进而确定主题教学目标,选择、设计情境和学习活动。根据学生实际,确定教学流程,设计每一节课教学,进行教学实施,然后不断反思—循环—提升。3抓住数学本质我国著名数学家华罗庚反复强调:能把书读厚,又能把书读薄,读薄就是抓住本质,抓住重点。抓住本质,才能更好地理解和提升数学核心素养。 4问题引领—发现、提出问题与分析解决问题 在关于数学和数学教育的大讨论中,问及在数学和数学教育中什么最重要时,著名数学家P. Harmous在一篇总结文章中强调“问题是关键”,数学概念、定理、模型和应用都是在解决问题的过程中总结形成的。在数学课程目标中,特别强调发展学生发现问题、提出问题与分析解决问题的能力,在基于数学核心素养的教学中,这也是关注的重点。 5创设合适情境 创设合适情境是基于数学核心素养教学的另一关注点。首先要对“情境需要”有个全面的认识,包括实际情境、科学情境、数学情境、历史情境。情境选择的基本原则是便于理解学习内容和要完成的任务,循序渐进,进而考虑激发学生的兴趣和热情。 6掌握学情,加强“会学”指导 “授之以鱼,不如授之以渔”是古训,这与学会学习的理念一致,“会学”比“学会”重要。“会学数学”应包括:阅读理解、质疑提问、梳理总结、表达交流。以“数学阅读理解”为例,需要清楚数学语言由数学自然语言、符号语言、图形语言组成,它的特点是准确、清晰、简洁,数学阅读就要会读“数学普通话”“符号”“图形(表格)”。而数学符号、图形(表格)又是一个系统,彼此联系,学生不能很快习惯,需要指导,不能太急。数学教师强调“学法指导”,是一个很好的经验,需要坚持、总结、提升。 二、基于数学核心素养的数学学习 基于数学核心素养的数学学习,应关注以下问题。 1视野—见识 学习数学需要有开阔的视野,了解数学的历史,了解数学的发展,了解数学在社会发展中的作用,美国科学委员会在写给美国总统的咨询报告中特别强调:“高科技本质上是数学技术”;了解数学在现实生活中的作用,英国研究理事会的评估报告认为,数学研究对英国经济的贡献约占英国所有工作岗位的10%和GDP增加值总额的16%。对优秀学生,教师应引导他们不满足于学到数学知识,得到好成绩,还需要获得好的见识。见识比知识更重要。 2做题= 数学学习?会学—自主 以做题取代数学学习,这是数学教育中的突出问题。通过做题巩固学习内容,这是学习数学的重要环节,但仅靠做题有很大的局限性。学习数学也需要理解数学概念、定理、应用,需要理解不同内容之间的联系。

7,基于数学核心素养课堂教学要素有哪些

“学科核心素养”是时下谈论较多的一个词,如何在课堂教学中培养学生的核心素养是一个我们需要关注的问题。一个具有一定造诣的教师,已然形成自己独特的教学风格,其课堂教学具有自然的“艺术性”,能让听过其课的师生无一不深受其人格魅力和教学艺术所震撼与熏染。细加剖析,这其中的原因是多方面的,仅就从“核心素养”的角度考虑,是其对学生“核心素养”的培养落实得到位。具体而言,其含义有二:一是帮助学生把陈述性知识变成程序性知识,即让学生掌握了分析问题、解决问题的思维方法,培养了学生可以迁移的自主学习能力;二是在师生共同的活动过程中,让学生充分体验到学习的快乐,有效地锻炼了学生的开拓进取、知难而进的意志品质。 其实,关键是“如何教”的问题。这是一个极为现实的问题,也是讨论太多的问题,似乎没有定型的答案,没有固定的课堂教学模式可供遵循。还是魏书生先生说的好,若你善于讲,就发挥讲的优势,若你善于启发学生自学,就引导学生自学的方法,总之,寻求你所擅长的高效做法。这篇文章里,我从常规的生态课堂教学入手,主要从分层设计、课堂操作、过程评价三个方面作一点说明,供大家参考。 一、分层设计 《礼记·学记》提出“学不躐等”,其含义有二:一是不同学生已有的知识层次和水平有差异,二是处于同一层次(水平)的学生在不同成长阶段需要施以不同的教学内容和不同的教学方法。因此,我们需要充分了解不同学生和同一学生在不同阶段所处的层次,再有针对性地进行分层设计。 十一学校的做法是:第一,以入校前测的结果指导分层,印发《选课指导手册》,提出选课建议,实施“小班化”教学;第二,在起始年级配备导师,进行有针对性的个别指导——发现那棵树,即关注个体、张扬其个性。导师的三个基本功能是:学业指导、心理疏导、人生引导。 二、课堂操作 每一节课都要给学生自学方法的示范;各学科都要设计能让师生有共同收获、共同成长的活动。例如,在数学课堂上,可以为学生构建一个研究数学对象的基本套路,即通过设计系列数学活动,让学生经历“事实——概念——性质(关系)——结构(联系)——应用”的完整过程(以此为教学内容的明线),使学生完成“事实——方法——方法论——数学学科本质观”的超越(以此为暗线)。从数学学科的核心素养角度看,若要从事实到概念皆融“数学抽象”于其中,可通过创设问题情境让学生尽快进入状态,激发学生的探究欲;从理解概念到明了性质,这一过程应使学生得到“数学推理”的基本训练,包括通过归纳推理发现性质,通过(逻辑)演绎推理证明性质;从明了性质到形成结构主要也是“数学推理”,因为这是建立相关知识的联系、形成结构功能良好、迁移能力强大的数学认知结构的过程;从理解概念、明了性质、形成结构到实践应用,在这一过程中,教师应随时注重指导学生用数学知识解决数学之外的问题,使学生得到“数学建模”的有效训练。 在上述几个步骤的关键处,应注意适时引导,加强“一般观念”的指导作用,如“如何思考”“如何发现”“从什么角度观察”;观察结构特征可从“数”“形”两个角度(静态)入手,若从动态角度入手,可改变目前问题的形式,进行等价转化后再让学生观察,进行必要的模式识别,学生往往会有新的发现,这时学生又可得到“直观想象”“数据分析”的训练。 我以课题《空间角的计算》的同课异构课型为例来具体说明。 【教师甲】 直接给出异面直线所成角、线面角、二面角的定义,稍加解释后引入空间向量方法,然后教师用课堂三分之二的时间进行例题讲解、题组练习,重点训练学生对于用向量方法求解三种空间角的能力。学生不感到难,接受情况好,听课老师也普遍反应课堂效果好。 【教师乙】 1.创设情境(事实) 首先投影,给出四个画面让学生观察:纵横交错的高速公路(异面直线所成的角)、两条电线短路放电的瞬间(异面直线的距离)、比萨斜塔倾斜度的测量(线面角)、蝴蝶展翅(飞翔)来回扇动翅膀的过程(二面角的大小)。 2.引入概念(数学抽象) 演示从平面到空间的变化过程,从而抽象出概念的本质属性。如异面直线可看成两条相交直线(就地取材,权且用两根粉笔取代),其中一条不动,另一条在空间向上(或向下)平行移动而成;还可看成两条平行直线,其中一条不动,另一条绕其上一点在空间转动而成。这种演示,可以有效启发学生发现表征异面直线的两个要素:异面直线所成的角与距离,同时也为学生能进一步抽象出异面直线的定义提供直观的形象载体。 3.求法研究(即性质、结构的探究) 图形均为空间图形,难以直接测量,其求法应当考虑转化与化归到平面上,用平面角来表示,即寻找一个典型的截面。如上述演示,回归即可引出作表征异面直线所成角用平面角的想法。这既分析了空间线面关系,又给出了求异面直线所成角的基本方法,即在具体图形中过某定点(最好选在这两条线上某个固定的点)作其中一条的平行线,将题设相关条件有效转化到一个三角形中,解此三角形即可。 同理,线面角转化为斜线与其在平面上射影的夹角,二面角则用垂直于棱的平面所截的两条射线夹角来表示,但在具体解题中不实用,可引导:仿照线面角的寻找来找二面角,即:先过其中一个半平面上一点P(不在棱上)向另一个半平面引垂线,过垂足H向棱引垂线,垂足为A,连结PA(易得AP垂直于棱),则角PAH就是二面角的平面角,或过点P分别向棱和另一半平面引垂线,垂足分别为A、H,连结AH(易得AH垂直于棱),则角PAH就是二面角的平面角,解三角形PAH即可。 再启发:还有什么比较好的方法可以求这些角吗?引入空间向量,介绍向量方法。引导学生:对于直角结构明显的空间图形,可建立坐标系,用向量坐标法解决,而直角结构不太明显者,可酌情考虑选一组基底,用向量几何法解决,或化斜为直,建立空间直角坐标系,用向量坐标法解决。
“核心素养”的提出,更是基础教育课程改革的创新点和突破点。其创新在于,以核心素养为统摄,使得教育“立德树人”的育人价值更加凸现;其突破在于,它是课程“三维目标”的整合。自从世纪初新课改以来,课程的“三维目标”已经人尽皆知,但人们往往只在学科教学的文本知识中去寻找它,将它机械地割裂开来,并且存在对它善贴标签的现象。“核心素养”作为课程育人价值的集中体现,贯穿于课程目标、结构、内容、教学实施以及质量标准与评价的整个过程中。“三维目标”可以在核心素养的目标下,在整个教学过程中得以完整体现。因此,“核心素养”是“三维目标”的整合和提升。
文章TAG:高中高中数学数学核心高中数学核心素养的六大要素

最近更新