首页 > 英语 > 经验 > 高一数学上册全部讲解视频,高一上学期数学

高一数学上册全部讲解视频,高一上学期数学

来源:整理 时间:2023-04-19 18:51:04 编辑:挖葱教案 手机版

本文目录一览

1,高一上学期数学

由an知a1=-10,d=-4. sn=-10n-2n(n-1),tn=-11n-6n^2

{0}

2,谁有人教版高中数学的讲课视频全一点的

http://www.tudou.com/home/dixiansheng/playlist有司马红丽的高中数学教学视频,就是文科的
网友您好我的百度云上有您想要的资源如果有需要可以上百度云加好友进行分享加好友后给我发所需资源信息帐号原野星辰

{1}

3,高一数学教学视频

简单学习网——中国高考网络视频辅导专家 http://www.etlearning.cn/?c=vip091685 这个网站不错,都是些名师。 你可以去听下他们的免费课程,据我所知,他们现在六月全月有一个高一的免费讲座。
http://so.youku.com/search_video/q_%20%E9%AB%98%E4%B8%80%E6%95%B0%E5%AD%A6%E5%90%8C%E6%AD%A5%E8%A7%86%E9%A2%91%E6%95%99%E5%AD%A6 这里有

{2}

4,请问高一上册数学问题怎么解每一步能详解吗

0≤x≤800, y=0800<x≤1300, y=5%(x-800)1300<x≤2800, y=5%×500+10%(x-1300)2800<x≤5800, y=5%×500+10%×2000+15%×(x-2800)5800<x≤20800, y=5%×500+10%×2000+15%×5000+20%×(x-5800)20800<x≤40800, y=5%×500+10%×2000+15%×5000+20%×20000+25%×(x-20800)40800<x≤60800, y=5%×500+10%×2000+15%×5000+20%×20000+25%×40000+30%(x-40800) 就是要分段一段一段解下来

5,高一数学详细讲解

将b=1带入,可得f(a+1)=f(a)+f(1)=f(a)-1f(a)=f(a+1)+1.....f(1)=f(2)+1-1=f(1)相加,可得f(a)=-a (a属于R)(1)根据奇函数的定义有:f(x)+(f-x)=0令a=x,b=-x可得f(x)+f(-x)=f(a)+f(b)=f(0)=0(2)y=f(x)=-x所以在(m,n)的值域是(-n,-m)
(1)由已知可得:f(0+0)=f(0)+f(0) 和 f(-x + x) = f(-x)+ f(x) 所以有 f(0)=0;f(x)= -f(-x) 即 y = f(x) 是奇函数 (2)要分段讨论 如果你想要详细的解,可以Q我 我的QQ是 997307241

6,高一人教版数学上册内容

到了高一不是说上册下册这样子的了。高中数学分为必修1至5,还有选修的。根据各个省和地区的不同,必修1-5的上课顺序是不同的,但是肯定先上必修1。但是在高一上学期会上差不多2本必修。必修一是学集合和基本初等函数,函数运用。说难不难,说是容易也是不容易的。要打好基础就是了。一些地方是必修1+必修4(三角函数,平面向量,三角恒等变换),有些地方是1+2(立体几何,解析几何)主要是看各个地方的教育局的安排。
点击该链接(人教版必修一)
人民教育出版社网( <a href="http://wenwen.soso.com/z/urlalertpage.e?sp=shttp%3a%2f%2fwww.pep.com.cn%2f%ef%bc%89" target="_blank">http://www.pep.com.cn/)</a>里有电子书本的。

7,高一上数学第二章函数 的详细讲解

首先我想跟你说的是学数学不能被概念,我学数学从来不被概念,因为没用,我从来就不知道函数的概念是什么,但这并不影响我数学高考考120分以上。上了高中学数学要背公式,背做题方法,而且要每天背。 下面说你问的问题。求函数的值域首先要判断定义域,这永远都是求值域的第一步,即使定义域是全体实数也要写上。然后就是把函数的草图画出来,标出定义域内的区间,,这个区间就是值域。做题方法就是这个,要不断找题练习,好好总结答案上的方法,找到做题感觉,一般来说求值域的题是送分题。 求反函数的方法就是先用y把x表示出来,即写成x= 。然后把y和x画一下就是反函数,当然随时要注意定义域,尤其是约分的时候。
二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 2. 构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。 (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。 发现解题中的错误。 4.快去了解区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 5.什么叫做映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B” 给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象 说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。 6. 常用的函数表示法及各自的优点: ○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2 解析法:必须注明函数的定义域;○3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4 列表法:选取的自变量要有代表性,应能反映定义域的特征. 注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值 补充一:分段函数 (参见课本P24-25) 在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集. 补充二:复合函数 如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。 例如: y=2sinX y=2cos(X2+1) 7.函数单调性 (1).增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间 (睇清楚课本单调区间的概念) 如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间. 注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。 (2) 图象的特点 如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3).函数单调区间与单调性的判定方法 (A) 定义法: ○1 任取x1,x2∈D,且x1<x2;○2 作差f(x1)-f(x2);○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x1)-f(x2)的正负);○5 下结论(指出函数f(x)在给定的区间D上的单调性). (B)图象法(从图象上看升降)_ (C)复合函数的单调性 复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下: 函数 单调性 u=g(x) 增 增 减 减 y=f(u) 增 减 增 减 y=f[g(x)] 增 减 减 增 注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗? 8.函数的奇偶性 (1)偶函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).奇函数 一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。 ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称). (3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 总结:利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2 确定f(-x)与f(x)的关系;○3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 . 9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 10.函数最大(小)值(定义见课本p36页) ○1 利用二次函数的性质(配方法)求函数的最大(小)值○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b); 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *. 当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数.此时, 的 次方根用符号 表示.式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand). 当 是偶数时,正数的 次方根有两个,这两个数互为相反数.此时,正数 的正的 次方根用符号 表示,负的 次方根用符号- 表示.正的 次方根与负的 次方根可以合并成± ( >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。 注意:当 是奇数时, ,当 是偶数时, 2.分数指数幂 正数的分数指数幂的意义,规定: , 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.实数指数幂的运算性质 (1) ? ; (2) ; (3) . (二)指数函数及其性质 1、指数函数的概念:一般地,函数 叫做指数函数(exponential function),其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a>1 0<a<1 图象特征 函数性质 向x、y轴正负方向无限延伸 函数的定义域为R 图象关于原点和y轴不对称 非奇非偶函数 函数图象都在x轴上方 函数的值域为R+ 函数图象都过定点(0,1) 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢; 注意:利用函数的单调性,结合图象还可以看出: (1)在[a,b]上, 值域是 或 ; (2)若 ,则 ; 取遍所有正数当且仅当 ; (3)对于指数函数 ,总有 ; (4)当 时,若 ,则 ; 二、对数函数 (一)对数 1.对数的概念:一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式) 说明:○1 注意底数的限制 ,且 ; ○2 ; ○3 注意对数的书写格式. 两个重要对数: ○1 常用对数:以10为底的对数 ; ○2 自然对数:以无理数 为底的对数的对数 . 2、 对数式与指数式的互化 对数式 指数式 对数底数 ← → 幂底数 对数 ← → 指数 真数 ← → 幂 (二)对数的运算性质 如果 ,且 , , ,那么: ○1 ? + ; ○2 - ; ○3 . 注意:换底公式 ( ,且 ; ,且 ; ). 利用换底公式推导下面的结论(1) ;(2) . (二)对数函数 1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。 如: , 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制: ,且 . 2、对数函数的性质: a>1 0<a<1 图象特征 函数性质 函数图象都在y轴右侧 函数的定义域为(0,+∞) 图象关于原点和y轴不对称 非奇非偶函数 向y轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,0) 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0 (三)幂函数 1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数. 2、幂函数性质归纳. (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸; (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴. 第三章 函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。即: 方程 有实数根 函数 的图象与 轴有交点 函数 有零点. 3、函数零点的求法: 求函数 的零点: ○1 (代数法)求方程 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数 . 1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点. 2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
都是根据定义域来算的,一个函数的值域由定义域及对应法则完全确定,先求定义域然后慢慢算就出来了,应该很容易的。 反函数就是用原函数Y表示X,求出的定义域值域分别为原函数的值域定义域
文章TAG:高一数学上册全部讲解视频高一数学上册

最近更新

  • 幼儿园寒假安全ppt课件免费,求冬季安全班会PPT 急用 最好是高中的 谢谢幼儿园寒假安全ppt课件免费,求冬季安全班会PPT 急用 最好是高中的 谢谢

    求冬季安全班会PPT急用最好是高中的谢谢防火,教室通风,用消毒水拖地,防骨折,宿舍不能合铺,水壶质量。防烫伤。2,幼儿园如何防雷电安全教育ppt幼儿园如何防雷电安全教育ppt分享如下:活动目标:1.....

    经验 日期:2023-05-06

  • 免费初中课程网课,免费的初中教学资源网免费初中课程网课,免费的初中教学资源网

    免费的初中教学资源网2,哪有免费的初中英语网上课堂啊3,求个好的学习网站可以学习初中课程要免费的4,免费的中学在线课堂5,火星学习网有初中的免费视频吗6,初中网课平台哪个好7,初中生免费学.....

    经验 日期:2023-05-06

  • 颜色大全色卡,24色标准色卡名称是什么颜色大全色卡,24色标准色卡名称是什么

    24色标准色卡名称是什么24色标准色卡名称是标准24色卡。24色标准色卡,包含六级灰度色块,加色三原色(红、绿、蓝),减色三原色(黄、品、红),以及肤色和模拟自然物体的真实颜色,色卡共有24个色块。.....

    经验 日期:2023-05-06

  • ps教案基本工具课后反思,如何安装ps并使用ps修复图片?ps教案基本工具课后反思,如何安装ps并使用ps修复图片?

    凭借其众多的编辑和绘图工具,您可以有效地编辑图片,如果你真的想成为一个ps大师,那也用不了几年,还是希望你能学好ps,只能短时间使用ps,3.“修复刷工具”应与“涂抹工具”和“模糊工具”.....

    经验 日期:2023-05-06

  • 教学设计要写设计意图吗,化学教案如何写里面包括设计意图吗教学设计要写设计意图吗,化学教案如何写里面包括设计意图吗

    化学教案如何写里面包括设计意图吗课题名称、学习目标、重点和难点、教学过程、板书设计、作业布置设计意图可以不写,若写出来更好。教案格式并不死板,因人而异,因课而异,因需而异。2,教案.....

    经验 日期:2023-05-04

  • word表格导入到excel,如何将word里面的表格导入到excel中去word表格导入到excel,如何将word里面的表格导入到excel中去

    如何将word里面的表格导入到excel中去2,word表格怎么导入Excel3,怎样将word中的表格成功导入到excel中4,如何把word里面的表格直接导入或者复制到excel里面5,怎样将WORD中的表格导入EXCEL6.....

    经验 日期:2023-05-04

  • 怎么制作微课视频教程,怎样制作微课视频怎么制作微课视频教程,怎样制作微课视频

    怎样制作微课视频2,怎么制作微课3,如何制作微课视频4,高中数学微课视频怎么制作5,如何用camtasiastudio制作微课6,如何设计微课7,如何制作和上传微课1,怎样制作微课视频现在很多人用Focusky这.....

    经验 日期:2023-05-04

  • 小班教案汽车大聚会教后记,小学教案1小班教案汽车大聚会教后记,小学教案1

    今天,一些小动物将作为客人来到我们班,(播放火车的声音)是什么车,那么优秀的教案喜欢的是什么呢,作为一个默默无闻无私奉献的教育工作者,需要精心设计一份教案,教案,这是教学活动的基础,具.....

    经验 日期:2023-05-04

相关文章