首页 > 语文 > 知识 > 初中数学论文40篇,以初中数学知识为主数学思想方法问题探究数学在生活中的应

初中数学论文40篇,以初中数学知识为主数学思想方法问题探究数学在生活中的应

来源:整理 时间:2023-06-04 11:48:10 编辑:挖葱教案 手机版

1,以初中数学知识为主数学思想方法问题探究数学在生活中的应

数学是一门理论性很强的科目,有很多的思维,如逆向思维、空间思维、整体代入思维、逻辑思维等,那么学好数学该怎么做呢?我想,许多数学不好的同学并不是不想学,学数学有个普遍的现象,就是:不是说不知道学习的方法,只不过是预习——学习——复习而已,但是为什么上课听得懂老师讲的所有内容,但到做题或考试的时候不会做呢?我想这是许多人想问的问题。下面我为大家讲讲学如何数学。数学做题就是靠运用能力和思维能力,这两个因素是决定数学成绩的高低。1.提高运用能力。在这个的前提下,必须是要有基础的前提下才行。提高运用能力,我们只有多做题这个办法,才能提高运用所学的知识的能力,其实这个比不难,只要多做题,不懂就问。2.思维能力。这思维能力是运用能力的基础,没思维能力何谈运用能力,所以提高思维能力是非常重要的。我们可以尝试一下下棋,下些有竞赛的棋,比如中国象棋,围棋,国际象棋等,千万不要下些飞行棋啊之类的,那些棋下来根本毫无意义(注意:比不是讲你走下棋的这条路),在下棋的过程中,通过思考这步怎么走,下步怎么走,可以训练逻辑思维能力,逻辑思维能力提高了,那你的数学写理由和证明的过程中就会越来越规范,理由不在跌三道四的。提高其他的思维能力,可以玩脑经急转弯或做些趣味数学题,这样也可以提高对数学的兴趣,有能力的可以做适合自己的奥林匹克数学题,做不出不奇怪,因为那些题非常难,分数没及格就可以难全国的一等奖了,所以做不出不奇怪,但要看那些做题的步骤,而且要看得明白,那样会提高各个思维能力的。只是本人多年来对数学的总结和经练,希望对你有帮助,毕竟是多年来的心血。谢谢!最好祝你们学习进步!

以初中数学知识为主数学思想方法问题探究数学在生活中的应

2,初中数学论文

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

初中数学论文

3,初中 生活中的数学 论文500字左右

生活中的数学 有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。 奇妙的“黄金数” 取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。 有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。 数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果! “黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。

初中 生活中的数学 论文500字左右

4,给我一篇初中数学论文

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
给你个提纲,你自己再扩充一下,就比较合适了 1.明白学好数学的意义,培养学习数学的兴趣(大概100——150字) 2.具体方法:多思、多想、多问、多练、多看、多用(需要结合初一课本的知识来举例说明) 多思考书中概念 多想想老师教的方法 多问问不懂的问题和延伸的知识点 多练习自己不熟悉的地方 多阅读与数学有关的书籍 在生活中多多运用数学 (这些具体方法有的可以点到为止,有的要举例说明(大概300——350字,根据前面的字数决定) 3.初中数学和小学数学的很大区别在于模型法和抽象思维的运用,小学一般是计算和形象思维,初中主要是方程、函数、几何证明等等, 因此最后可以用50字讲一下自己的心得体会,可以讲一下自己预习的情况,再做总结 一般初中论文要求并没有那么高,希望你能在本次作业中取得成功!

5,初一数学论文

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
人民币中的数学问题 有一天,我跟妈妈去逛商场。妈妈进超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。 在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!

6,初一数学小论文

最古老的扑克牌智慧,你自己猜猜 那个最好写
我狂汗。哦耶。俄已经找到了哦。
在平常学习中,有许多关于证明全等三角形的问题。据我现在知道,证明全等三角形的方法就有四种:SSS,SAS,ASA,AAS。唯独不能用的就是SSA,用这种方法证明是完全错误的。现在,我就先分别每一种证明方法列两个题目。SSS是指有三边对应相等的两个三角形全等。第一题是SSS证明方法里最简单的。 如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。 证明:∵AF=DC(已知) E ∴AF+FC=DC+FC ∴ AC=DF 在△ABC与△DEF A F ∵ AC=DF(已证) C D AB=DE(已知) DC=EF(已知) ∴△ABC≌△DEF(SSS) B ∴∠EFD=∠BCA(全等三角形的对应角相等) 这是最基础的一道题。下面讲第二道题。这一题还运用了关于中点的知识。如图,AB=DC,AC=DF,C是BF的中点。说明△ABC≌△DCF. 证明:∵C是BF的中点(已知) A D ∴BC=CF(线段中点定义) 在△ABC与△DCF中 ∵AB=DC(已知) AC=DF(已知) B C F BC=CF(已证) ∴△ABC≌△DCF(SSS) 这一题不仅帮我了解了SSS的题目,还帮我巩固了中点的知识。SAS是指有两边和它们的夹角对应相等的两个三角形全等。第一题还是SAS证明方法中最简单的题目。 如图,AC与BD相交于点O,已知OA=OC,OB=OD,说明△AOB≌△COD. 证明:在△AOB与△COD中 A B ∵OA=OC(已知) ∠AOB=∠COD(对顶角相等) O OB=OD(已知) ∴△AOB≌△COD(SAS) D C 这一题是非常的简单但是如果前面的对顶角知识没学好的话,这一题就不会这么轻松了。下面再来讲讲第个题目第二题还运用了中垂线的知识。如图,直线L⊥线段AB于点O,且OA=OB,点C是直线L上任意一点,说明CA=CB。 证明:∵直线L⊥线段AB于点O ∴∠COA=∠COB(垂直的定义) 在△COA与△COB中 C ∵OA=OB(已知) ∠COA=∠COB(已证) OC=OC(公共边) ∴△COA≌△COB(SAS) ∴CA=CB(全等三角形的对应角相等) A O B L ASA是指两角和它们的夹边对应相等的两个三角形全等。 第一题是ASA比较简单的。 如图,已知∠DAB=∠CAB,∠EBD=∠EBC,说明△ABC≌△ABD. 证明:∵∠EBD=∠EBC(已知) D ∴∠ABC=∠ABD(等角的补角相等) 在△ABC与△ABD中 A B E ∵∠DAB=∠CAB(已知) AB=AB(已知) ∠ABC=∠ABD(已证) C △ABC≌△ABD(ASA)这一题我说它简单是因为有许多已知的条件,但是有一条件是要记得等角的补角相等这一知识。这是比较简单的一道题,下面讲第二题。这一题还运用高的知识。 如图,△ABC的两条高AD,BE相交于H,且AD=BD,说明△DBH≌△ADC.证明:∵AD,BE相交于点H ∴∠BHD=∠AHE(对顶角相等) A∵AD,BE是△ABC的高∴△BDH≌△ADC(AAS) E∵∠HBD+∠BHD+∠BDH=180° ∠AHE+∠HAE+∠EAH=180°∴∠DBH=∠DAC在△BDH和△ADC中 B D C∵∠BHD=∠ACD(已证) ∠HDB=∠CDA(已证 AD=BD(已知)∴∠ADC=∠BDH=90°还有最后一种是运用AAS的方法来证明题目。如图,已知∠B=∠C,AD=AE,说明AB=AC. B证明:在△ABE与△ACD中 ∵∠B=∠C(已知) D ∠A=∠A(公共角) A AE=AD(已知) E ∴△ABE≌△ACD(AAS) C ∴AB=AC(全等三角形的对应边相等)这也只是一种,还有一种不仅用AAS方法证明全等三角形,其中还用了角平分线的知识。如图,点P是是∠BAC的平分线上的一点,PB⊥AB,PC⊥AC,说明PB=PC。证明:∵AP是∠BAC的平分线(已知) ∴∠CAP=∠BAP(角平分线的定义) ∵PB⊥AB,PC⊥AC(已知) ∴∠ABP=∠ABP(垂线的定义) 在△APB与△APC中 C ∵∠PAB=∠PAC(已证) P ∠ABP=∠ABP(已证) AP=AP(公共边) V A B ∴△APB≌△APC(AAS) ∴PB=PC(全等三角形的对应边相等)

7,初中数学学生小论文

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
初中数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
文章TAG:初中初中数学数学论文初中数学论文40篇

最近更新

相关文章